MATH 314 Fall 2019 - Class Notes

9/16/2019
Scribe: Jay Romero
Summary: Classical Ciphers and Elementary Number Theory

Notes:

One-Time Pads

- It is a Vigenere cipher where key has the same length as the plaintext.
- Key is a completely random string of letters.
- Can only use a key one-time hence the name.
- It is a mathematically unbreakable cipher.
- DOWNSIDE: You need to use a new key for every message sent and key size is as big as the message being sent which is not practical.

Elementary Number Theory

Find $\operatorname{gcd}(a, b)$

- One idea is to use trial division where you try dividing both a, b by all the numbers up to $\min (a, b)$ takethelargestnumberthatdividesboth.
How long will this approach take? $n=\min (a, b)$
Let $\mathrm{x}=$ number of bits required to write n in base 2

$$
x=\left\lceil\log _{2} n\right\rceil
$$

If we do n-trial divisions then running time $O(n)=\mathrm{O}\left(2^{x}\right)$

- Another approach is the factorization method, that is, factor a, b into primes, find gcd by taking all primes that divide both.
- The fastest known algorithm for factoring an x -bit number runs in $O\left(e^{\sqrt{ }} \ln (x)\right)$ Sub-exponential but still much slower than polynomial time.
- The best approach is Euclids Algorithm where reunning time is $O(x)=\mathrm{O}(\log n)$
- Key idea: Division with remainder
- Fact: Given any two positive integers a, b there exist two integers q , r with $a=b q+r$ and $0 \leq r<b$.

Proof.
Given a, b compute $q \equiv\left\lfloor\frac{a}{b}\right\rfloor$ then compute $r=a-b q$
NOTE: $r+b q=a$
Need to show that $0 \leq r<b$

$$
\frac{a}{b}-1<\left\lfloor\frac{a}{b}\right\rfloor \leq \frac{a}{b} \Rightarrow \frac{a}{b}-1<q \leq \frac{a}{b}
$$

Now multiply through by b yields

$$
a-b<q b \leq a
$$

Soqb $\leq a \Rightarrow 0 \leq a-q b=r$ so $0 \leq r$
$a-b<q b$
$r=q-q b<b \Rightarrow r$

- If d divides n and m then d divides $\mathrm{n}+\mathrm{m}$ and $\mathrm{n}-\mathrm{m}$

Suppose $d=\operatorname{gcd}(a, b)$
Write $a=b q+r$
$r=a-b q$
d has to divide r so $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
Apply this recursively. Repeat until we get a remainder of 0 . The answer is the previous remainder.
Example: gcd $(158,38)$
Use division with remainder

$$
\begin{gathered}
158=4(38)+6 \\
\operatorname{Sogcd}(158,38)=\operatorname{gcd}(38,6) \\
38=6(6)+2 \Rightarrow \operatorname{gcd}(158,38)=\operatorname{gcd}(38,6)=\operatorname{gcd}(6,2) \\
6=3(2)+0 \\
\text { So } \operatorname{gcd}(158,38)=2
\end{gathered}
$$

Extended Euclidian Algorithm

If $\operatorname{gcd}(a, b)=d$ then there exist integers x and y so that $a x+b y=d$
Euclid Algorithm tells us how to find x and y
Use Euclids Algorithm backward. Start with the equation that gave last remainder and solve it for d.

$$
2=38-6(6)
$$

Solve the next equation for its remainder.
Substitute in.

$$
\begin{gathered}
6=158-4(38) \\
\Rightarrow 2=38-6(158-4(38)) \Rightarrow 2=-6(158)+25(38)
\end{gathered}
$$

Example: Find x and y so that $72 x+25 y=1$

Use Euclidean Algorithm forward $\operatorname{gcd}(72,25)$

$$
\begin{gathered}
72=2(25)+22 \\
25=1(22)+3 \\
22=7(3)+1 \\
3=3(1)+0
\end{gathered}
$$

So GCD $=1$
Now use Euclidean Algorithm backwards

$$
\begin{gathered}
1=22-7(3) \\
3=25-1(22) \\
\text { So1 }=22-7(25-1(22)) \\
=-7(25)+8(22)
\end{gathered}
$$

Since

$$
22=72-2(25)
$$

Substitute gives us

$$
1=-7(25)+8(72-2(25)) \Rightarrow 1=8(72)-23(25)
$$

where $x=8$ and $y=-23$

