MATH 314 Fall 2019 - Class Notes

9/16/2019

Scribe: Jay Romero

Summary : Classical Ciphers and Elementary Number Theory

Notes:

One-Time Pads

- It is a Vigenere cipher where key has the same length as the plaintext.
- Key is a completely random string of letters.
- Can only use a key one-time hence the name.
- It is a mathematically unbreakable cipher.
- DOWNSIDE: You need to use a new key for every message sent and key size is as big as the message being sent which is not practical.

Elementary Number Theory

Find gcd(a, b)

One idea is to use trial division where you try dividing both a, b by all the numbers up to min (a, b)takethelargestnumberthatdividesboth.
How long will this approach take? n = min (a, b)
Let x = number of bits required to write n in base 2

$$x = \lceil \log_2 n \rceil$$

If we do n-trial divisions then running time $O(n) = O(2^x)$

- Another approach is the factorization method, that is, factor a, b into primes, find gcd by taking all primes that divide both.
- The fastest known algorithm for factoring an x-bit number runs in $O(e^{\sqrt{x}} \ln(x))$ Sub-exponential but still much slower than polynomial time.
- The best approach is Euclids Algorithm where reunning time is $O(x) = O(\log n)$
- Key idea: Division with remainder

• Fact: Given any two positive integers a, b there exist two integers q, r with a = bq + rand $0 \le r < b$.

Proof.

Given a, b compute $q \equiv \lfloor \frac{a}{b} \rfloor$ then compute r = a - bqNOTE: r + bq = aNeed to show that $0 \le r < b$

$$\frac{a}{b} - 1 < \lfloor \frac{a}{b} \rfloor \leq \frac{a}{b} \Rightarrow \frac{a}{b} - 1 < q \leq \frac{a}{b}$$

Now multiply through by b yields

$$a - b < qb \le a$$

$$\begin{aligned} Soqb &\leq a \Rightarrow 0 \leq a - qb = r \text{ so } 0 \leq r \\ a - b < qb \\ r &= q - qb < b \Rightarrow r < b > \end{aligned}$$

 $\bullet\,$ If d divides n and m then d divides n + m and n - m

Suppose $d = \gcd(a, b)$ Write a = bq + r r = a - bqd has to divide r so $\gcd(a, b) = \gcd(b, r)$ Apply this recursively. Repeat until we get a remainder of 0. The answer is the previous remainder. **Example:** $\gcd(158, 38)$ Use division with remainder

$$158 = 4(38) + 6$$

So gcd(158, 38) = gcd(38, 6)
$$38 = 6(6) + 2 \Rightarrow gcd(158, 38) = gcd(38, 6) = gcd(6, 2)$$

$$6 = 3(2) + 0$$

So gcd(158, 38) = 2

Extended Euclidian Algorithm

If gcd(a,b) = d then there exist integers x and y so that ax + by = dEuclid Algorithm tells us how to find x and y

Use Euclids Algorithm backward. Start with the equation that gave last remainder and solve it for d.

$$2 = 38 - 6(6)$$

Solve the next equation for its remainder. Substitute in.

$$6 = 158 - 4(38)$$

$$\Rightarrow 2 = 38 - 6(158 - 4(38)) \Rightarrow 2 = -6(158) + 25(38)$$

Example: Find x and y so that 72x + 25y = 1

Use Euclidean Algorithm forward gcd(72, 25)

$$72 = 2(25) + 22$$

$$25 = 1(22) + 3$$

$$22 = 7(3) + 1$$

$$3 = 3(1) + 0$$

So GCD = 1

Now use Euclidean Algorithm backwards

$$1 = 22 - 7(3)$$

$$3 = 25 - 1(22)$$

$$So1 = 22 - 7(25 - 1(22))$$

$$= -7(25) + 8(22)$$

Since

$$22 = 72 - 2(25)$$

Substitute gives us

$$1 = -7(25) + 8(72 - 2(25)) \Rightarrow 1 = 8(72) - 23(25)$$

where x = 8 and y = -23