MATH 314 Fall 2019 - El Gammal

11/06/2019

Scribe: Andrew Noonan

Summary: El Gammal: A public key cryptosystem. El Gammal is used to send messages using the discrete logarithm problem as a one-way function.

- 1. Alice Creates a public key
 - Pick a large prime p (at least 200 digits)
 - Pick a primative root (mod p), this will be called $\alpha \pmod{p}$
 - Pick a secret exponent **k** where $2 \le k$
 - Compute $\beta \equiv \alpha^k \pmod{p}$
- 2. Alice's public key is (p, α, β)
 - k needs to stay secret
 - Eve cannot solve $\beta \equiv \alpha^k \pmod{p}$
- 3. Bob wants to send Alice a message M. Bob picks a secret number $b(2 \le b < p-1)$
 - B is only used one time!
 - This is called an ephemeral key
- 4. Bob computes his r and t
 - $r \equiv \alpha^b \pmod{p}$ Sending info about b —
 - $t \equiv M * \beta^b \pmod{p}$ Sending info about M —
- 5. Alice receives (r, t)
 - Alice computers $r^{-k} * t \pmod{p} = M$

Notes: Why does bob need to pick a different b each time?

- 1. Suppose bob always uses the same b every time
- 2. He sends $r \equiv \alpha^b \pmod{p}$ and $t \equiv M * \beta^b \pmod{P}$
 - One of these times Eve manges to figure out the message
 - Since Eve knows t and M, she can solve for $\beta^b \equiv t * M^{-1} \pmod{p}$
- 3. Now suppose bob sends another message with the same b

- $r \equiv \alpha^b \pmod{p}$ this does not change! —
- $t_2 \equiv M_2 * \beta^b \pmod{\mathbf{p}}$
- Since Eve knows β^b , Even can compute $T_2 * \beta^{-1} \equiv M_2 \pmod{p}$ without ever learning k or b!
- If bob uses a different b each time Eve would have to learn k or b to decrypt

Notice: If Eve guesses the plaintext message M

- If Alice and Bob are using RSA then Even can check her guess by computing $M^e \pmod{n}$ to see if this is Bob's C.
- With El Gammal Eve can't check her guess without knowing the b that Bob used.