Hash Functions

Benjamin Pecson

11/20/2019

Cryptographic Hash Functions should have the following three properties:

- Preimage Resistance
- Weak Collision Resistance
- Strong Image Resistance

The Discrete Logarithm Hash has strong image resistance.
The Discrete Logarithm Hash is comprised of:

- Two primes, p and q

Where, $p=2 q+1$

- Two different Primitive Roots:

Alpha and Beta, where:

$$
\begin{aligned}
& -\alpha^{a} \equiv \beta(\bmod \mathrm{p}) \\
& -\beta^{b} \equiv \alpha(\bmod \mathrm{p})
\end{aligned}
$$

Finidng a and b in the equations above is difficult.
Hash a message m which is less than q^{2}

$$
h(m)<p
$$

The input produces a digest such that $m<p$

Hash Function: $h(m)=h\left(x_{1}+x_{2} * q\right) \equiv \alpha^{x_{1}} \beta^{x_{2}}(\bmod p)$

$$
m<q^{2} \text {, so write } \mathrm{m} \text { in base } \mathrm{q}
$$

$$
\begin{aligned}
& \text { Where } m=x_{1}+x_{2} * q \\
& \quad \text { and } 0 \leq x_{1}, x_{2}<q
\end{aligned}
$$

How to prove this hash function is preimage resistant:

If we can find a collision to this discrete \log hash then we can use the discrete \log problem $\alpha^{a} \equiv \beta(\bmod \mathrm{p})$

Suppose a collision is found:

$$
\begin{aligned}
& m=x_{1}+x_{2} * q, \\
& \quad \text { where } m!=m^{6}, \\
& \text { but } m^{6}=y_{1}+x_{2} * q, \\
& \quad \text { and } h(m)=h\left(m^{6}\right) \\
& \\
& \alpha^{x_{1}} \beta^{x_{2}} \equiv \alpha^{y_{1}} \beta^{y_{2}}(\bmod \mathrm{p}) \\
& \alpha^{x_{1}}\left(\alpha^{a}\right)^{x_{2}} \equiv \alpha^{y_{1}}\left(\alpha^{a}\right)^{y_{2}}(\bmod \mathrm{p}) \\
& \alpha^{x_{1}+a x_{2}} \equiv \alpha^{y_{1}+a y_{2}}(\bmod \mathrm{p}) \\
& \alpha^{\left(x_{1}-y_{1}+a\left(x_{2}-y_{2}\right)\right)} \equiv 1(\bmod \mathrm{p})
\end{aligned}
$$

Because p is a primitive root,

$$
\begin{aligned}
& p-1 \mid\left(x_{1}-y_{1}+a\left(x_{2}-y_{2}\right)\right. \\
& \left(x_{1}-y_{1}+a\left(x_{2}-y_{2}\right) \equiv 0(\bmod \mathrm{p}-1)\right. \\
& a\left(x_{2}-y_{2}\right) \equiv-\left(x_{1}-y_{1}\right)\left(y_{1}-x_{1}\right)(\bmod \mathrm{p}-1) \\
& a \equiv\left(x_{2}-y_{2}\right)^{-1}\left(y_{1}-x_{1}\right)(\bmod \mathrm{p}-1)
\end{aligned}
$$

Why is this not used in practice?

Because, even with small input there is a lot of calculations.
Hash Attacks

Birthday Attack

How many people should exist in a room such that the probability two people share the same birthday is approx $1 / 2$?

There are 365 days in a year, and there are two people
Probability they share a birthday? $1 / 365$
Probability that they don't share the same birthday? 1-1/365
What if there is three people?

$$
(1-1 / 365)(1-2 / 365)
$$

What if there is k people?

$$
(1-1 / 365)(1-2 / 365) \ldots(1-(k-1) / 365) \approx e^{-k^{2} / 2(365)}
$$

Find k such that $1 / 2 \leq e^{-k^{2} / 2(365)}, \mathrm{k}=23$

Another Example

Take k things being chosen randomly from n possibilities (with replacement). Then the probability that no two choices are the same is $\approx e^{-k^{2} / 2^{n}}$

License Plate Example
How many cars are needed before it is likely that two cars have the same last three digits?
$\mathrm{N}=1000$ possible endings
The probability should be: $e^{-k^{2} / 2^{n}}<1 / 2$

$$
\begin{aligned}
& e^{-k^{2} / 2000}<1 / 2 \\
& =-k^{2} / 1000<\ln (1 / 2) \\
& =-\ln (2)-k^{2}<-2000 \ln (2) \\
& -k^{2}>\ln (2) \\
& k>(2000 \ln (2))^{-1 / 2} \approx 37
\end{aligned}
$$

How Birthday Attack works:

Alice has a digital signature function $\mathrm{s}(\mathrm{x})$ and a hash function $\mathrm{h}(\mathrm{x})$

Alice signs a message using $\mathrm{s}(\mathrm{h}(\mathrm{x}))^{* *}$ This is preimage resistant, no one else will have the same x

Eve's goal is to have Alice sign a bad contract.
Eve drafts two contracts: 1 good and 1 bad

Eve wants to find 35 places (35 is a reasonable example number for a hash example) she can make a small change without changing the meaning of the message.
2^{35} good contracts and 2^{35} bad contracts
2^{36} contracts total
Eve hashes all of them to find a collision. What is the probability of finding a solution?

Probability of number collisions: $2^{36}, k=2^{36}$
$e^{-k^{2} / 2(n)}, n=2^{60}$ digests, $k=2^{36}$ contracts
$e^{-2^{72} / 2^{61}}=e^{-2^{11}}=e^{-2048} \approx 10^{-800}$, which is a very small chance for collision

There will be a collision between a good contract and a bad contract.
Eve has two contracts
MG and MB
Eve gives MG to Alice, Alice signs it.
$\mathrm{s}(\mathrm{h}(\mathrm{MG}))$

Alice has the valid signature, which is valid for both the good contract and the bad contract.
$h(M G)=h(m b)$, same signature is valid for both
How does Alice protect against this?
Eve chooses the MG using a specific method
If Alice makesa single change the hash of MB will not equal the hash of MB So, Alice ultimately produces the final contract.

