MATH 314 Fall 2019 - Class Notes

10/07/19
Scribe: Kenny Vu

Jacobi Symbol

- Any Legendre Symbol is also a Jacobi Symbol
- Remember: Legendre Symbols \# on bottom is prime
- Jacobi Symbol - Allows the \# on bottom to be an odd composite \#
- If $\left(\frac{a}{n}\right)$ is a Jacobi Symbol where n is composite the value of $\left(\frac{a}{n}\right)$ does not tell us whether a is a quadratic residue or not.
- In Quadratic reciprocity the \#'s don't need to be prime just odd.
- When working with Jacobi Symbols we don't completely factor the \# on top just factor out 2's

$$
\text { Is } 47 \text { a square }(\bmod 89) ?(\text { Jacobi Symbol })
$$

$$
\begin{gathered}
\left(\frac{47}{89}\right)=\left(\frac{89}{47}\right)=\left(\frac{42}{47}\right) \rightarrow\left(\frac{2}{47}\right)\left(\frac{21}{47}\right) \\
\left(\frac{2}{47}\right)=1 \text { because } 47 \equiv 7(\bmod 8) \\
\left(\frac{21}{47}\right)=\left(\frac{47}{21}\right)=\left(\frac{5}{21}\right)=\left(\frac{21}{5}\right)=\left(\frac{1}{5}\right)=1
\end{gathered}
$$

Fermat Primality Test

Recall Fermat's little theorem
If p is prime then $a^{p-1}=1(\bmod p)$
a is not divisible by p
Suppose we have some \# n
Compute

$$
a^{n-1} \not \equiv 1(\bmod n)
$$

This means n cannot be prime
$\underline{\text { Fermat Primality Test }}$

1. pick a random integer a $1<a<p-1$
2. compute $a^{n-1} 1(\bmod n)$

If it isn't 1 we are certain n is composite
If it is 1 then n is probably prime

Try this out
Take $\mathrm{n}=9$
Pick a random a $\rightarrow a=2$
Compute
$2^{9-1}=2^{8}(\bmod 9)$

$$
\begin{aligned}
& 2^{2}=4 \\
& 2^{4}=\left(2^{2}\right)^{2}=4^{2}=16 \equiv 7(\bmod 9) \\
& 2^{8}=\left(2^{4}\right)^{2}=7^{2}=49 \equiv \underline{4}(\bmod 9)
\end{aligned}
$$

This returned a 4 . So 9 is a composite.

Another example

$$
\begin{aligned}
& n=15 \text { check if } 15 \text { is prime } \\
& a=4
\end{aligned}
$$

Compute
$4^{15-1}=4^{14}(\bmod 15)=4^{8+4+2}$

$$
\begin{aligned}
& 4^{2}=16=\underline{\mathbf{1}}(\bmod 15) \\
& 4^{4}=\left(4^{2}\right)^{2}=1^{2}=\underline{\mathbf{1}}(\bmod 15) \\
& 4^{8}=\left(4^{4}\right)^{2}=1^{2}=\underline{\mathbf{1}}(\bmod 15)
\end{aligned}
$$

$(1)(1)(1)=1(\bmod 15)$
Fermat's test says that it's "probably prime"
Try again

$$
\begin{aligned}
& n=15 \\
& a=7
\end{aligned}
$$

Compute
$7^{15-1}=7^{14}(\bmod 15)=7^{8+4+2}$

$$
\begin{aligned}
& 7^{2}=49=\underline{4}(\bmod 15) \\
& 7^{4}=\left(7^{2}\right)^{2}=4^{2}=\underline{\mathbf{1}}(\bmod 15) \\
& 7^{8}=\left(7^{4}\right)^{2}=1^{2}=\underline{\mathbf{1}}(\bmod 15)
\end{aligned}
$$

$(4)(1)(1)=4(\bmod 15)$
Fermat's test says that it's composite

- If $a^{n-1} \equiv 1(\bmod n)$, but n is a composite. We say that n is a base - a pseudoprime
- Ex: 15 is a base 4 pseudoprime
- There exist number's called carmichael numbers which are composite but they are pseudoprime to every base
- Smallest Carmichael number is 561

Feistel Cipher

Operate on a sting of m bits
m - is the block length
m - is even (fixed by chiper)

A feistel cipher consists of multiple rounds of the following
-Break the block into 2 havles L,R $m / 2$ bits each
Last half moves to the front

To define a cipher using the feistel setup we need to

1. Pick a block size m
2. Pick a function $f(R, K)$
3. Pick a rule for choosing the key used in each round
4. Decide how many rounds we want.

Encryption: Follow the Feistel rule several times
Decryption: Swap left and right halves. Then do the same steps as encryption but in reverse.
$S \oplus S=$ all 0's

$$
\oplus \leftarrow \text { also subtraction }
$$

$101 \oplus 101=000$
2 rounds of feistel cipher
$P=L_{0}, R_{0}$

