
10/30/19 Class Notes

Matthew Bender

November 7, 2019

For RSA, we need big prime numbers
So we need an "is-prime" function

fermat test(n) for k from 1 to 20:

pick a random a from (2,n-1)
compute x = an−1 (mod n)
if(x 6= 1 (mod n))

return composite
else

continue

return prime

The fermat test is a good way for checking primes, but it does have
noticable problems

• lots of pseudoprimes

• carmichael numbers

To fix this, we will introduce the Solovay Strassen Test

Solovay Strassen (n):
for k from 1 to 20

pick a random a from (2,n-1)
compute x = [a

n] (Jacobi Symbol)
compute y = a(n−1)/2 (mod n)

if(x 6≡ y (mod n))
return composite

else
continue

return prime

1

Example:
Test n = 25 using a = 7
Compute [a

n]⇒ [7
25]⇒ [25

7]⇒ [4
7]⇒ [2

7][2
7]⇒ (1)(1)⇒ 1

x = 1

Compute y = 7(25−1)/2 ≡ 712 (mod 25)
72 ≡ 49 ≡ 24 (mod 25)
74 ≡ (72)2 ≡ 242 ≡ (−1)2 ≡ 1 (mod 25)
78 ≡ 1 (mod 25)
712 ≡ 1 (mod 25)

Solovay Strassen says "probably prime" because x ≡ y
Now pick a new a

a = 3
Compute [a

n]⇒ [3
25]⇒ [25

3]⇒ [1
3]⇒ 1

Compute 3(25−1)/2

312 ≡ 38 × 34

32 ≡ 9 (mod 25)
34 ≡ 92 ≡ 81 ≡ 6 (mod 25)
38 ≡ (34)2 ≡ 62 ≡ 36 ≡ 11 (mod 25)
38 × 34 ≡ 6× 11 ≡ 66 ≡ 16 (mod 25)

Solovay Strassen says 25 is composite because 1 6≡ 16

There is a test that’s even better than Solovay Strassen, with fewer
pseudoprimes

Miller-Rabin test(n):
Write 2km [m is odd]
Pick a random a in [2, n-1] (the goal is to compute an−1 (mod n))

Step 1: compute b0 ≡ am (mod n)
If b0 ≡ 1 or −1 (mod n)

n is probably prime (continue)

Step 2:
for j from 1 to k-1 [k is the power from 2]

compute bj = b2
j−1 (mod n)

if bj ≡ 1 (mod n)
return composite

if bj ≡ −1 (mod n)

2

say probably prime [continue]

If we finish the loop and bk−1 6≡ ±1 (mod n)
return composite

Else the number is prime

For Miller-Rabin, at most, 1/4 of the possible a values say probably
prime for composite n

3

