10/30/19 Class Notes

Matthew Bender

November 7, 2019

For RSA, we need big prime numbers
So we need an "is-prime" function

fermat test(n) for k from 1 to 20:

pick a random a from (2,n-1)
compute x = a” ! (mod n)
if(x#1 (mod n))

return composite
else
continue

return prime

The fermat test is a good way for checking primes, but it does have
noticable problems

e lots of pseudoprimes

e carmichael numbers
To fix this, we will introduce the Solovay Strassen Test

Solovay Strassen (n):
for k from 1 to 20
pick a random a from (2,n-1)
compute x =[] (Jacobi Symbol)
compute y = a(»" /2 (mod n)

if(zx £y (mod n))
return composite
else
continue

return prime



Example:
Test n =25 using a =7
Compute [2] =[] = [¥] = [7]= B3] = (1)(1) =1
rz=1

Compute y = 7(?>=1/2 =712 (mod 25)
72 =49 =24 (mod 25)
"=(1)?2=242=(-1)2=1 (mod 25)
7® =1 (mod 25)

712 =1 (mod 25)

Solovay Strassen says "probably prime" because z =y
Now pick a new a

a=3

Compute [£] = [%] = [%] = [%] =1
Compute 3(2°-1)/2

312 =38 x 34

32=9 (mod 25)

3*=92=81=6 (mod 25)
F=3Y)2=62=36=11 (mod 25)
3F¥x31=6x11=66=16 (mod 25)

Solovay Strassen says 25 is composite because 1 # 16

There is a test that’s even better than Solovay Strassen, with fewer
pseudoprimes

Miller-Rabin test(n):
write 2¥m [m is odd]
Pick a random a in [2, n-1] (the goal is to compute a" ! (mod n))

Step 1: compute byp =a™ (mod n)
If bp=1 or —1 (mod n)
n is probably prime (continue)

Step 2:
for j from 1 to k-1 [k is the power from 2]
compute b; = b?71 (mod n)

if b;=1 (mod n)
return composite
if b;=—-1 (mod n)



say probably prime [continue]

If we finish the loop and by_; # +1 (mod n)
return composite
Else the number is prime

For Miller-Rabin, at most, 1/4 of the possible a values say probably
prime for composite n



