# 10/30/19 Class Notes 

Matthew Bender

November 7, 2019

For RSA, we need big prime numbers So we need an "is-prime" function

```
    fermat test(n) for k from 1 to 20:
```

    pick a random a from ( \(2, \mathrm{n}-1\) )
        compute \(\mathrm{x}=\mathrm{a}^{n-1}(\bmod n)\)
        \(i f(x \neq 1 \quad(\bmod n))\)
            return composite
        else
    continue
return prime
The fermat test is a good way for checking primes, but it does have noticable problems

- lots of pseudoprimes
- carmichael numbers

To fix this, we will introduce the Solovay Strassen Test

Solovay Strassen (n):
for $k$ from 1 to 20
pick a random a from ( $2, \mathrm{n}-1$ )
compute $x=\left[\frac{a}{n}\right]$ (Jacobi Symbol)
compute $y=a^{(n-1) / 2} \quad(\bmod n)$
if $(x \not \equiv y \quad(\bmod n))$
return composite
else
continue
return prime

```
Example:
    Test \(n=25\) using \(a=7\)
    Compute \(\left[\frac{a}{n}\right] \Rightarrow\left[\frac{7}{25}\right] \Rightarrow\left[\frac{25}{7}\right] \Rightarrow\left[\frac{4}{7}\right] \Rightarrow\left[\frac{2}{7}\right]\left[\frac{2}{7}\right] \Rightarrow(1)(1) \Rightarrow 1\)
    \(x=1\)
    Compute \(y=7^{(25-1) / 2} \equiv 7^{12} \quad(\bmod 25)\)
    \(7^{2} \equiv 49 \equiv 24 \quad(\bmod 25)\)
    \(7^{4} \equiv\left(7^{2}\right)^{2} \equiv 24^{2} \equiv(-1)^{2} \equiv 1 \quad(\bmod 25)\)
    \(7^{8} \equiv 1 \quad(\bmod 25)\)
    \(7^{12} \equiv 1 \quad(\bmod 25)\)
    Solovay Strassen says "probably prime" because \(x \equiv y\)
        Now pick a new a
    \(a=3\)
    Compute \(\left[\frac{a}{n}\right] \Rightarrow\left[\frac{3}{25}\right] \Rightarrow\left[\frac{25}{3}\right] \Rightarrow\left[\frac{1}{3}\right] \Rightarrow 1\)
    Compute \(3^{(25-1) / 2}\)
    \(3^{12} \equiv 3^{8} \times 3^{4}\)
    \(3^{2} \equiv 9 \quad(\bmod 25)\)
    \(3^{4} \equiv 9^{2} \equiv 81 \equiv 6 \quad(\bmod 25)\)
    \(3^{8} \equiv\left(3^{4}\right)^{2} \equiv 6^{2} \equiv 36 \equiv 11 \quad(\bmod 25)\)
    \(3^{8} \times 3^{4} \equiv 6 \times 11 \equiv 66 \equiv 16 \quad(\bmod 25)\)
    Solovay Strassen says 25 is composite because \(1 \not \equiv 16\)
```

There is a test that's even better than Solovay Strassen, with fewer pseudoprimes

```
Miller-Rabin test(n):
    Write 2 }\mp@subsup{2}{}{k}m\mathrm{ [m is odd]
    Pick a random a in [2, n-1] (the goal is to compute a a n-1 (mod n))
```

    Step 1: compute \(b_{0} \equiv a^{m}(\bmod n)\)
        If \(b_{0} \equiv 1\) or \(-1(\bmod n)\)
            n is probably prime (continue)
    Step 2:
        for j from 1 to \(\mathrm{k}-1\) [k is the power from 2]
            compute \(b_{j}=b_{j-1}^{2} \quad(\bmod n)\)
            if \(b_{j} \equiv 1 \quad(\bmod n)\)
                    return composite
                if \(b_{j} \equiv-1 \quad(\bmod n)\)
    say probably prime [continue]
If we finish the loop and $b_{k-1} \not \equiv \pm 1(\bmod n)$ return composite
Else the number is prime
For Miller-Rabin, at most, $1 / 4$ of the possible a values say probably prime for composite n

