MATH 314 Fall 2019 - Class Notes

10/12/2019

Scribe: Jacob M. Smedley

Summary: Modes of Operation - Cipher Feedback, Output Feedback, and Counter; Double Encrypted DES

Notes:

- One-time-pad
 - Encryption occurs by adding the plaintext to a completely random key k
 - $C = P \oplus k$ Encryption with one-time-pad
- Other modes of operation "mimic" the one-time-pad
 - Use Encryption function as a random number generator to produce a "key" like in the one-time-pad
- Cipher Feedback (CFB)
 - $-C_0 =$ random string sent unencrypted (cleartext)
 - Encryption (CFB)
 - * $C_1 = E_k(C_0) \oplus P_1$
 - * $C_2 = E_k(C_1) \oplus P_2$
 - * $C_i = E_k(C_{i-1}) \oplus P_i$
 - Decryption of CFB
 - * Bob wants to decrypt messages sent using CFB
 - * He knows C_0, C_1 ; goal: recover P_1
 - * He computes $E_k(C_0)$
 - * $C_1 \oplus E_k(C_0) = P_1$
 - * $P_i = E_k(C_{i-1}) \oplus C_i$
- Output Feedback (OFB)
 - Pick a random O_0 sent in cleartext
 - Encryption
 - $* O_1 = E_k(O_0)$
 - $* C_1 = P_1 \oplus O_1$
 - $* O_2 = E_k(O_1)$

$$C_2 = P_2 \oplus O_2$$

$$\frac{O_i = E_k(O_{i-1})}{C_i = O_i \oplus P_i}$$

- Decryption

$$* \frac{O_i = E_k(O_{i-1})}{P_i = C_i \oplus O_i}$$

- Counter (CTR)
 - $-X_0 = \text{All 0's (or random)}$
 - $-X_i = X_{i-1}$ incremented by 1
 - Encryption

$$* C_i = P_i \oplus E_k(X_i)$$

– Decryption

$$* P_i = C_i \oplus E_k(X_i)$$

- By the mid-90s DES was no longer secure
- 56-bit keys (2⁵⁶ possible keys) were within the realm of brute force
- Unlike previous ciphers double encryption is not the same as single encryption with a different key
- $E_{k_2}(E_{k_1}(P)) \neq E_{k_3}(P)$
- Double encryption is vulnerable to a meet-in-the-middle attack
 - * Known Plaintext Attack
 - $\ast\,$ Alice and Bob are using double encryption with keys k_1 and k_2
 - * Eve can brute force attack single encryption but not double encryption
 - * She learns that $C = E_{k_2}(E_{k_1}(P))$
 - Decrypt both sides: $D_{k_2}(C) = E_{k_1}(P)$
 - * (P, C) are a plaintext and corresponding ciphertext
 - * Goal: Find k_1 and k_2
 - * Eve creates two tables
 - * Table 1:
 - \cdot All possible encryptions of P
 - $\cdot E_{k_1}(P)$ for every k_1
 - * Table 2:
 - \cdot All possible decryptions of C

· $D_{k_2}(C)$ for every k_2

- $\ast\,$ She finds all possible matches in both tables
- * Repeats with a new P' and C'
- * Checks each of the matches from (P, C)
- * Odds are that only one pair k_1 and k_2 will work