MATH 314 Fall 2019 - Class Notes

10/12/2019
Scribe: Jacob M. Smedley
Summary: Modes of Operation - Cipher Feedback, Output Feedback, and Counter; Double Encrypted DES

Notes:

- One-time-pad
- Encryption occurs by adding the plaintext to a completely random key k
- $C=P \oplus k$ - Encryption with one-time-pad
- Other modes of operation "mimic" the one-time-pad
- Use Encryption function as a random number generator to produce a "key" like in the one-time-pad
- Cipher Feedback (CFB)
$-C_{0}=$ random string sent unencrypted (cleartext)
- Encryption (CFB)
* $C_{1}=E_{k}\left(C_{0}\right) \oplus P_{1}$
* $C_{2}=E_{k}\left(C_{1}\right) \oplus P_{2}$
* $C_{i}=E_{k}\left(C_{i-1}\right) \oplus P_{i}$
- Decryption of CFB
* Bob wants to decrypt messages sent using CFB
* He knows C_{0}, C_{1}; goal: recover P_{1}
* He computes $E_{k}\left(C_{0}\right)$
* $C_{1} \oplus E_{k}\left(C_{0}\right)=P_{1}$
* $P_{i}=E_{k}\left(C_{i-1}\right) \oplus C_{i}$
- Output Feedback (OFB)
- Pick a random O_{0} sent in cleartext
- Encryption
* $O_{1}=E_{k}\left(O_{0}\right)$
* $C_{1}=P_{1} \oplus O_{1}$
* $O_{2}=E_{k}\left(O_{1}\right)$
* $C_{2}=P_{2} \oplus O_{2}$
* $O_{i}=E_{k}\left(O_{i-1}\right)$
* $\underline{C_{i}=O_{i} \oplus P_{i}}$
- Decryption
* $\frac{O_{i}=E_{k}\left(O_{i-1}\right)}{P_{i}=C_{i} \oplus O_{i}}$
* $\underline{P_{i}=C_{i} \oplus O_{i}}$
- Counter (CTR)
- $X_{0}=$ All 0's (or random)
- $X_{i}=X_{i-1}$ incremented by 1
- Encryption
* $\underline{C_{i}=P_{i} \oplus E_{k}\left(X_{i}\right)}$
- Decryption
* $\underline{P_{i}=C_{i} \oplus E_{k}\left(X_{i}\right)}$
- 2 DES
- By the mid-90s DES was no longer secure
- 56 -bit keys (2^{56} possible keys) were within the realm of brute force
- Unlike previous ciphers double encryption is not the same as single encryption with a different key
- $E_{k_{2}}\left(E_{k_{1}}(P)\right) \neq E_{k_{3}}(P)$
- Double encryption is vulnerable to a meet-in-the-middle attack
* Known Plaintext Attack
* Alice and Bob are using double encryption with keys k_{1} and k_{2}
* Eve can brute force attack single encryption but not double encryption
* She learns that $C=E_{k_{2}}\left(E_{k_{1}}(P)\right)$
- Decrypt both sides: $D_{k_{2}}(C)=E_{k_{1}}(P)$
* (P, C) are a plaintext and corresponding ciphertext
* Goal: Find k_{1} and k_{2}
* Eve creates two tables
* Table 1:
- All possible encryptions of P
- $E_{k_{1}}(P)$ for every k_{1}
* Table 2:
- All possible decryptions of C

$$
\text { - } D_{k_{2}}(C) \text { for every } k_{2}
$$

* She finds all possible matches in both tables
* Repeats with a new P' and C'
* Checks each of the matches from (P, C)
* Odds are that only one pair k_{1} and k_{2} will work

