
Cryptography

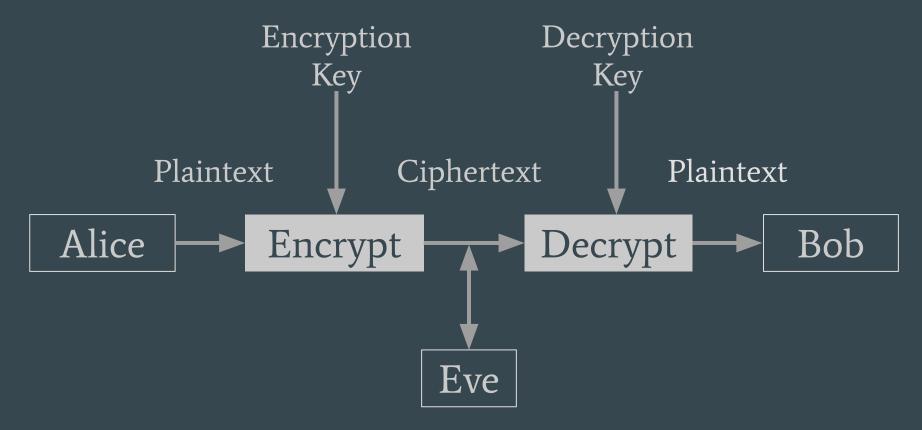
•••

A Brief History and Introduction MATH/COSC 314

What is cryptography?

Cryptology

Study of communication securely over insecure channels


Cryptography

Writing (or designing systems to write) messages securely

Cryptanalysis

Study of methods to analyze and break hidden messages

Secure Communications

- Symmetric Key: Alice and Bob use a (preshared) secret key.
- Public Key: Bob makes an encryption key public that Alice uses to encrypt a message. Only Bob has the decryption key.

Possible Attacks

Eve (the eavesdropper) is trying to:

- Read Alice's message.
- Find Alice's key to read all of Alice's messages.
- Corrupt Alice's message, so Bob receives an altered message.
- Pretend to be Alice and communicate with Bob.

Why this matters

Confidentiality

Only Bob should be able to read Alice's message.

Data integrity

Alice's message shouldn't be altered in any way.

Authentication

Bob wants to make sure Alice actually sent the message.

Non-repudiation

Alice cannot claim she didn't send the message.

Going back in time...

5th century BC

Secret writing and **steganography** saved Greece from being completely conquered by the Persians.

- Invisible Ink
- Shaved head

Steganography vs. Cryptography

Steganography hides the existence of a message.

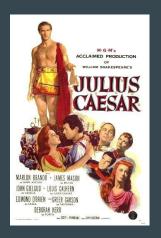
Cryptography hides the meaning of a message.

Back to 5th century BC

Lysander of Sparta used a scytale for encryption.

Back to 5th century BC

The sender wraps the message around a rod of a fixed diameter.


Example: "Help me I am under attack."

To decrypt, just wrap strip around a rod of the same diameter.

1st century BC

Dramatized based on the Shakespeare play.

Julius Caesar used a cipher (now known as the "Caesar cipher")

Idea: Encrypt message by shifting the alphabet 3 letters.

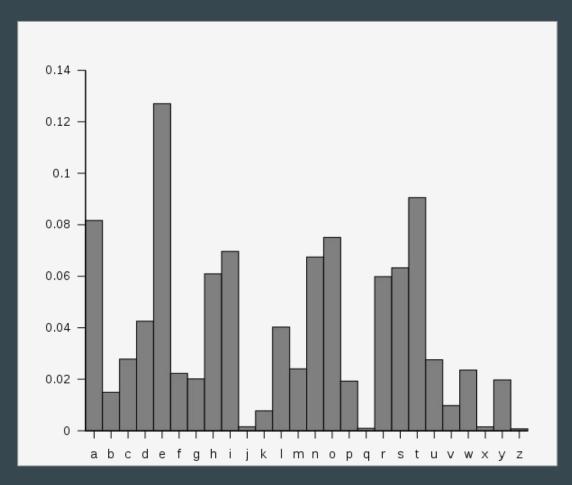
Example: "Et tu, Brute?"

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ciphertext: DEFGHIJKLMNOPQRSTUVWXYZABC

Plaintext: ETTUBRUTE

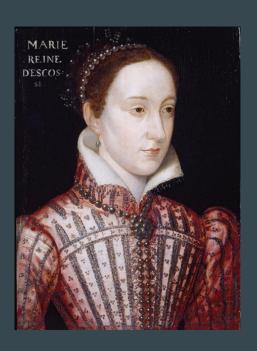
Ciphertext: HWWXEUXWH


9th-10th century

- *Adab-al-Kuttāb* or "The Secretaries' Manual"
- Arabs invented cryptanalysis, systematic study of ways of deciphering a code without a key.

دا معالده ما والهر وصف والمكار ما المنت المرة مردة الكالا مع المعموما ليرك مر ما المارة و المعموما ليرك مر ما المارة و المعموما المهلم بيدا لموالكم و المعن والمارة و ما و معساء الموالكم و والمعن و المارة و المعمومة و المعمومة المعلم و الموالكم و المعمومة و المعمومة و المعمومة و المعمومة المعمومة المعمومة المعمومة المعمومة المعمومة المعمومة و المعموم

9th-10th century


Frequency analysis: Using frequently used letters to decipher the code.

15th century

- Use of **nulls** to confuse cryptanalysts.
- Used in Babington plot to assassinate Queen Elizabeth.
- Broken, let to the trial and execution of Mary, Queen of Scots

1586

Vigenère Cipher

Blaise de Vigenère reinvents Giovan Battista Bellaso's cipher.

One letter is no longer encoded the same way every time.

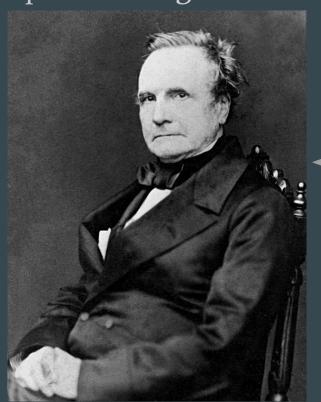
Described as unbreakable by many, including Lewis Carroll.

1586

Example: Encrypting "Attack at dawn" using LEMON

Plaintext: ATTACKATDAWN

Key: LEMONLEMONLE


Ciphertext: LXFOPVEFRNHR

```
A B C D E F G H I J K L M N O P Q R S T U V W X
AABCDEFGHIJKLMNOPQRSTUVW
      F G H I J K L M N O P Q R S T U V W X
           J K L M N O P Q R S T U V W
           KLMNOPQRSTUVWXYZ
 E F G H I J K L M N O P Q R S T U V W X Y Z A B
       J K L M N O P Q R S T U V W X Y Z
       K L M N O P Q R S T U V W X
    J K L M N O P Q R S T U V W X Y
   J K L M N O P Q R S T U V W X Y Z A B C
  KLMNOPQRSTUVWXYZABCD
       O P Q R S T U V W X Y Z A B C D
NNOPQRSTUVWXYZABCDEFGH
O O P Q R S T U V W X Y Z A B C D E F G H I
  QRSTUVWXYZABCDEFGHIJKLM
QQRSTUVWXYZABCDEFGHI
RRSTUVWXYZABCDEFGHIJKLMNO
T T U V W X Y Z A B C D E F G H I J K L M N
UUVWXYZABCDEFGHIJKLMNO
VVWXYZABCDEFGHIJKLMNOPQRS
W W X Y Z A B C D E F G H I J K L M N O P Q R S
XXYZABCDEFGHIJKLMNOPQRSTU
YYZABCDEFGHIJKLMNOPQRSTUVWX
ZZABCDEFGHIJKLMNOPQRSTUVWXY
```

1854

- Charles Babbage found a solution to the Vigenère cipher.
- Analytical Engine
- "Father of the Computer" along with Ada Lovelace

You can see half his brain at the - Science Museum in London!

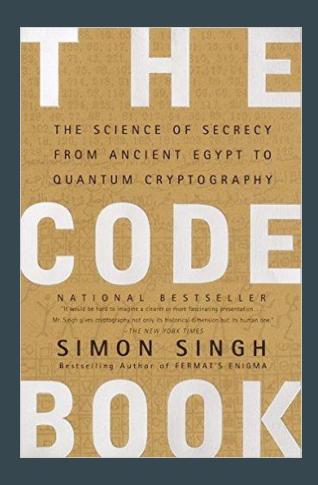
The other half is at the Hunterian Museum in the Royal College of Surgeons in London.

1920s-1940's

- Enigma machines (Germany)
- Most notably used in WWII
- Polish Cipher Bureau started breaking Enigma messages.
- Alan Turing later improved the Polish methods.
- Bombe

You can try a working enigma machine at the cryptologic museum at Fort Meade.

Recurring Theme (until the 1970s)


- Secret Code Invented.
- Typically called "unbreakable" by inventor.
- Used by spies, ambassadors, kings, generals for crucial tasks.
- Broken by enemy using cryptanalysis.

"Human ingenuity cannot concoct a cipher which human ingenuity cannot resolve."

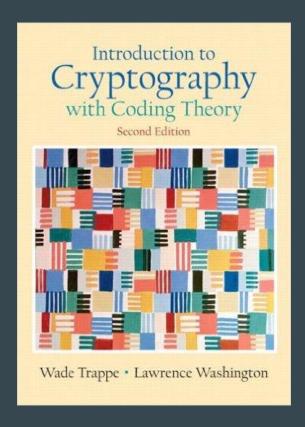
Edgar Alan Poe, 1841

If you want more history...

Read The Code Book (Simon Singh).

This Course

What you'll learn:


- Foundations and principles of the math behind crypto.
- Basic ingredients and components.
- Definitions, theorems and some proofs
- High-level applications and implementations

What you will not learn:

- The most efficient and practical versions of components.
- Designing secure systems
- "Hacking" breaking into systems.
- Viruses, worms, side-channel attacks etc.
- Everything important about crypto

Resources

- Course Website: http://tigerweb.towson.edu/nmcnew/m314f19/
- CoCalc: http://www.cocalc.com/
- The textbook:

