Class Notes: 9/26:
Number Theory (Continued)
Alex Poniatowski
September 30, 2018

Fields (Continued from last class):

- Integers \mathbb{Z} : don't form a field but instead make up a ring
- a ring is similar to a field except that you can't always divide in rings
- by extension, every ring is a field
- Other examples of rings include:
* Square Matrices
* Polynomials
- Define $\mathbb{F}_{2}[\mathrm{x}]$ the ring of polynomials with coefficients that are 0 and 1 ; using $(\bmod 2)$ arithmetic
- Ex.:
* $f(x)=x^{2}+x+1$
* $g(x)=x^{3}+x$
* $f(x)+g(x)=x^{3}+x^{2}+0+1=x^{3}+x^{2}+1$
- In $\mathbb{F}_{2}[\mathrm{x}]$, addition and subtraction are the same operation
* $f(x)+g(x)=f(x)-g(x)$
* $f(x)+f(x)=0$
* $f(x) g(x)=\left(x^{2}+x+1\right)\left(x^{3}+x\right)=x^{5}+x^{3}+x^{4}+x^{2}+x^{3}+x=$ $x^{5}+x^{4}+x^{2}+x$
- We can add, subtract and multiply polynomials in $\mathbb{F}_{2}[\mathrm{x}]$, but usually we can't divide
- We can however, perform division with remainders
* Ex.: divide $g(x)$ into $f(x)$ and find remainder $x^{3}+0 x+x+0 / x^{2}+x+1=x+1$ with remainder $x+1$
- If a polynomial of degree at least two doesn't have any factors of a degree smaller than itself, we say it is an irreducible polynomial
- Ex.: say $F(x)$ is irreducible in $\mathbb{F}_{2}[\mathrm{x}]$ and has degree d. How many possibilities in $\mathbb{F}_{2}[\mathrm{x}]$ have smaller degrees?
* $C_{0} x^{d-1}+C_{1} x^{d-2} \ldots C(d)^{1}$
- So 2^{d} possibilities, resulting in the field $\mathbb{F}_{2}[\mathrm{~d}]$
- Let's find $\mathbb{F}_{4}=\mathbb{F}_{2}^{2}$; we need an irreducible polynomial of degree 2
* Claim: $p(x)=x^{2}+x+1$ is irreducible
* So what polynomials have a smaller degree?
- $(x+0)$ and $(x+1)$ Verify that $p(x)$ is irreducible by dividing these into $p(x)$. If there are remainders then it is irreducible.

+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0
*	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0 x	$\mathrm{x}+1$	1	0

- Ex.: $\mathbb{F}_{4}=x, 1, x+1,0$; nothing with degree greater than 2 ; using $\bmod \left(x^{2}+x+1\right)$ (see tables above)
- Everything in tables have inverses

$$
* x(x+1) \equiv 1\left(\bmod x^{2}+x+1\right)
$$

* $x^{-1} \equiv(x+1)\left(\bmod x^{2}+x+1\right)$
$*(x+1)^{-1} \equiv x\left(\bmod x^{2}+x+1\right)$
- If $a^{m}(\bmod p)$ produces all of the residues $(\bmod p)$ for different values of m , then a is called a primitive root
- If a is a primitive root, then $a^{k} \equiv 1$ where $k<p-1$
- When does $x^{2} \equiv b(\bmod p)$ have a solution?
- If it has a solution, it is called a quadratic residue

