Class Notes: 9/26: Number Theory (Continued)

Alex Poniatowski

September 30, 2018

Fields (Continued from last class):

- Integers Z: don't form a field but instead make up a **ring**
 - a **ring** is similar to a field except that you can't always divide in rings
 - by extension, every **ring** is a field
 - Other examples of **rings** include:
 - * Square Matrices
 - * Polynomials
- Define \mathbb{F}_2 [x] the ring of polynomials with coefficients that are 0 and 1; using (mod 2) arithmetic
 - Ex.:

$$f(x) = x^2 + x + 1$$

- $* g(x) = x^3 + x$
- * $f(x) + q(x) = x^3 + x^2 + 0 + 1 = x^3 + x^2 + 1$
- In \mathbb{F}_2 [x], addition and subtraction are the same operation
 - * f(x) + g(x) = f(x) g(x)
 - * f(x) + f(x) = 0
 - * $f(x)g(x) = (x^2 + x + 1)(x^3 + x) = x^5 + x^3 + x^4 + x^2 + x^3 + x = x^5 + x^4 + x^2 + x$
- We can add, subtract and multiply polynomials in $\mathbb{F}_2[\mathbf{x}]$, but usually we can't divide
- We can however, perform division with remainders
 - * Ex.: divide g(x) into f(x) and find remainder $x^{3} + 0x + x + 0/x^{2} + x + 1 = x + 1$ with remainder x + 1
- If a polynomial of degree at least two doesn't have any factors of a degree smaller than itself, we say it is an **irreducible polynomial**
 - Ex.: say F(x) is **irreducible** in $\mathbb{F}_2[x]$ and has degree d. How many possibilities in $\mathbb{F}_2[\mathbf{x}]$ have smaller degrees? * $C_0 x^{d-1} + C_1 x^{d-2} \dots C(d)^1$
 - So 2^d possibilities, resulting in the field $\mathbb{F}_2[d]$
 - Let's find $\mathbb{F}_4 = \mathbb{F}_2^2$; we need an **irreducible polynomial** of degree 2
 - * Claim: $p(x) = x^2 + x + 1$ is irreducible
 - * So what polynomials have a smaller degree?
 - (x+0) and (x+1) Verify that p(x) is irreducible by dividing these into p(x). If there are remainders then it is irreducible.

+0 1 \mathbf{x} $\mathbf{x+1}$ 0 0 1 х x+11 1 0 $\mathbf{x+1}$ х 0 \mathbf{x} х x+11 0 $\mathbf{x+1}$ 1 x+1х * 0 1 \mathbf{x} $\mathbf{x+1}$ 0 0 0 00 1 0 1 х x+11 \mathbf{x} 0 х x+10 $\mathbf{x+1}$ 0 x+11

- Ex.: $\mathbb{F}_4 = x, 1, x + 1, 0$; nothing with degree greater than 2; using mod $(x^2 + x + 1)$ (see tables above)
- Everything in tables have inverses

* $x(x+1) \equiv 1(modx^2 + x + 1)$ * $x^{-1} \equiv (x+1)(modx^2 + x + 1)$ * $(x+1)^{-1} \equiv x(modx^2 + x + 1)$

• If $a^m(modp)$ produces all of the residues (mod p) for different values of m, then a is called a **primitive root**

– If a is a **primitive root**, then $a^k \equiv 1$ where k

• When does $x^2 \equiv b(modp)$ have a solution?

- If it has a solution, it is called a **quadratic residue**