MATH 314 - Class Notes

09/28/2017

Scribe: Sundeep Singh

Summary: Introduction to finite fields, Primitive roots, Legendre Symbols, and Quadratic residues

<u>Notes:</u> 28 September 2017 \mathbb{E}_{4} (Field with 4 elements)

 $\frac{\mathbb{F}_4(\text{Field with 4 elements})}{\mathbb{F}_4(\text{Field with 4 elements})}$

Polynomials $\mathbb{F}_2[x]$ modulo $x^2 + x + 1$ $x^3 + x + 1$ is also irreducible

Look at Polynomials modulo $x^3 + x + 1$

There are 8 residuals modulo $x^3 + x + 1$

These residues will form a field \mathbb{F}_8

Important

Fact for every $n_{i} = 1$ there exists an irreducible polynomial in F2[x] of degree n.

The field F_{2^n} is obtained by taking the polynomials $\mathbb{F}_2[x]$ modulo g(x) where g(x) has is irreducible and has degree n.

Definition

A primitive root (mod p) is a residue a such that the powers $a, a^2, a^3, ---, a^{(p-1)}$ (don't repeat), include every residue (mod p)

Primitive root

If a is a primitive root (mod p) then for any other residue $b \neq 0$.

There is some power i so that a^i is equivalent to $b \pmod{p}$

Every prime p has at least one primitive root.

If g is a primitive root and g^i equivalent $g^j \pmod{p}$. Then i equivalent $j \pmod{p-1}$.

Definition

If $a \pmod{p}$ has a square root meaning x^2 equivalent $a \pmod{p}$ has a solution then we call a a quadratic residue (mod p). If not we call a a quadratic non-residue.

Definition: The Legendre Symbol

(a/p)

- 1 if a is a quadratic residue (mod p)
- 0 if a equivalent 0(mod p)
- -1 if a is not a quadratic residue mod p

Legendre Symbol Facts

1. (a/p) = (b/p) if a equivalent b(mod p)

2.
$$ab/p = (a/p)(b/p)$$

- 3. (2/p) =
 - 1 if p=1 or 7 (mod 8)
 - -1 if p=3 or 5 (mod 8)

- 4. If p and q are both odd primes then (q/p)=
 - -(p/q): if p equivalent to q and q equivalent to 3 (mod 4)
 - (p/q): otherwise

Example: Is 1001 a quadratic residue mod 9907?

 $\overline{\begin{array}{l}1001 = 7 \times 11 \times 13\\(1001/9907) = (7/9907) \times (11/9907) \times (13/9907) = 1\\(7/9907) = -(9907/7)\\-(9907/7) = -(2/7)\\(-2/7) = -1\\9907 = 2(mod7)\end{array}}$