MATH 314 - Class Notes

09/28/2017
Scribe: Sundeep Singh
Summary: Introduction to finite fields, Primitive roots, Legendre Symbols, and Quadratic residues
Notes: 28 September 2017
\mathbb{F}_{4} (Field with 4 elements)
Polynomials $\mathbb{F}_{2}[x]$ modulo $x^{2}+x+1$
$x^{3}+x+1$ is also irreducible
Look at Polynomials modulo $x^{3}+x+1$
There are 8 residuals modulo $x^{3}+x+1$
These residues will form a field \mathbb{F}_{8}

Important

$\overline{\text { Fact for every }} \mathrm{n}_{\mathrm{c}}=1$ there exists an irreducible polynomial in $\mathrm{F} 2[\mathrm{x}]$ of degree n .
The field $F_{2^{n}}$ is obtained by taking the polynomials $\mathbb{F}_{2}[x]$ modulo $g(x)$ where $g(x)$ has is irreducible and has degree n.

Definition

A primitive root $(\bmod p)$ is a residue a such that the powers $\left.a, a^{2}, a^{3},---, a^{(} p-1\right)$ (don't repeat), include every residue $(\bmod p)$

Primitive root

If a is a primitive root $(\bmod p)$ then for any other residue $b \neq 0$.
There is some power i so that a^{i} is equivalent to $b(\bmod p)$
Every prime p has at least one primitive root.
If g is a primitive root and g^{i} equivalent $g^{j}(\bmod p)$. Then i equivalent $j(\bmod p-1)$.
Definition
If $a(\bmod p)$ has a square root meaning x^{2} equivalent $a(\bmod p)$ has a solution then we call a a quadratic residue $(\bmod p)$. If not we call a a quadratic non-residue.

Definition:The Legendre Symbol

(a/p)

- 1 if a is a quadratic residue $(\bmod p)$
- 0 if a equivalent $0(\bmod p)$
- -1 if a is not a quadratic residue $\bmod p$

Legendre Symbol Facts

1. $(\mathrm{a} / \mathrm{p})=(\mathrm{b} / \mathrm{p})$ if a equivalent $\mathrm{b}(\bmod \mathrm{p})$
2. $\mathrm{ab} / \mathrm{p}=(\mathrm{a} / \mathrm{p})(\mathrm{b} / \mathrm{p})$
3. $(2 / \mathrm{p})=$

- 1 if $\mathrm{p}=1$ or $7(\bmod 8)$
- -1 if $\mathrm{p}=3$ or $5(\bmod 8)$

4. If p and q are both odd primes then $(\mathrm{q} / \mathrm{p})=$

- $-(\mathrm{p} / \mathrm{q})$: if p equivalent to q and q equivalent to $3(\bmod 4)$
- (p/q): otherwise

Example: Is 1001 a quadratic residue $\bmod 9907 ?$
$1001=7 \times 11 \times 13$
$(1001 / 9907)=(7 / 9907) \times(11 / 9907) \times(13 / 9907)=1$
$(7 / 9907)=-(9907 / 7)$
$-(9907 / 7)=-(2 / 7)$
$(-2 / 7)=-1$
$9907=2(\bmod 7)$

