MATH 314 - Class Notes

9/26/2017

Scribe: Darian Hegberg

Summary: We recapped Eulers Theorem worked examples and moved to understanding what rings and fields are in addition to examples regarding fields.

Notes: Include detailed notes from the lecture or class activities.

- 1. Eulers function: $\varphi = n * \prod_{p|n} (\frac{p-1}{p})$
- 2. Eulers cont. If the GCD(a,n) = 1, then $a^{\varphi(n)} \equiv 1 \pmod{n}$
- 3. Basic principle of exponential arithmetic mod n, If the GCD(a,n) = 1 and $x \equiv y(mod\varphi(n))$, then $a^x \equiv a^y(modn)$
- 4. When we work (mod n) we can think of the residues as a ring. (We can add, subtract, multiply). In the case that we have a ring where everything is invertible except 0, we have a field.
- 5. Theorem: For any integer <u>n</u> there is at most one field with exactly n elements in it. (*Field*₄)
- 6. We call a polynomial irreducible if the only polynomials that evenly divide it are 1 and itself.
- 7. If p(x) is an irreducible polynomial then the set of polynomials in $(Field_2[x]) \mod p(x)$ form a field

Examples: If including plaintext or ciphertext or other data it is often helpful to write them using typewriter text.

- 1. Eulers Example 1.
 - Example: Compute last 3 digits of 3^{80403} What is 3^{80403} (mod1000)?
 - Use Eulers Thrm: Need $\varphi(1000)$ The only primes that divide 1000 are 2 and 5
 - $\varphi(1000) = 1000 \prod_{p|1000} \left(\frac{p-1}{p}\right) = 1000(\frac{1}{2})(\frac{4}{5}) = 400$
 - Since $80403 \equiv 3(mod1000), 3^{80403} \equiv 3^3(mod1000) \equiv 27(mod1000)$
 - Last 3 digits are (0, 2, 7)
- 2. What is $(Field_4)$? Look at the ring $Field_2[x]$ This is the set of all polynomials with coefficients in $Field_2$.
 - How do we do arithmetic in $Field_2[x]$?
 - Arithmetic is the same as usual with polynomials except we reduce all the coefficients modulo 2 at the end.
 - $f(x) = x^3 + 0x^2 + x + 1 = x^3 + x + 1$

•
$$g(x) = x^2 + x + 0 = x^2 + x$$

- f(x) + g(x) The x's cancel, to get $x^3 + x^2 + 0x + 1$

- f(x) * g(x) $-(x^{3} + x + 1)(x^{2} + x) = x^{5} + x^{4} + x^{3} + 0x^{2} + x$
- 3. How can we divide one polynomial into another with a remainder? Long division with remainder still works for polynomial divide f(x) by g(x) and find the remainder.

 - x³+0x²+x+1/x²+x = x³ + x + 1 ≡ 1(mod(x² + x))
 Claim p(x) = x² + x + 1 is irreducible in (Field₂[x])
 - The only option for smaller polynomials are f(x) = x and g(x) = x + 1
 - Note: $f(x)f(x) = x * x = x^2$, $f(x) * g(x) = x^2 + x$, $g(x) * g(x) = x^2 + 1$ Is Irreducible
 - So the polynomials mod $x^2 + x + 1$ form a field, What are the possible remainders when dividing $x^2 + x + 1$.
- 4. This is $(Field_4)$

	+	0			1		х		x+1	
	0	0			1		Х		x+1	
•	1	1 x			0 x+1		x+1 0		х	
	Х								1	
	x+1	x+1			Х		1		0	
						_				
	*	*		1			х		x+1	
	0	0		0			0		0	
•	1	1		1			х		x+1	
	X	x		Х		1	x+1		1	
	x+1	x+1		2	x+1		1		х	