MATH 314 - Class Notes
 9/26/2017

Scribe: Darian Hegberg
Summary:We recapped Eulers Theorem worked examples and moved to understanding what rings and fields are in addition to examples regarding fields.
Notes: Include detailed notes from the lecture or class activities.

1. Eulers function: $\varphi=n * \prod_{p \mid n}\left(\frac{p-1}{p}\right)$
2. Eulers cont. If the $\operatorname{GCD}(\mathrm{a}, \mathrm{n})=1$, then $a^{\varphi(n)} \equiv 1(\bmod n)$
3. Basic principle of exponential arithmetic mod n , If the $\mathrm{GCD}(\mathrm{a}, \mathrm{n})=1$ and $x \equiv y(\bmod \varphi(n))$, then $a^{x} \equiv a^{y}(\bmod n)$
4. When we work $(\bmod n)$ we can think of the residues as a ring. (We can add,subtract,multiply). In the case that we have a ring where everything is invertible except 0 , we have a field.
5. Theorem: For any integer \underline{n} there is at most one field with exactly n elements in it. $\left(\right.$ Field $\left._{4}\right)$
6. We call a polynomial irreducible if the only polynomials that evenly divide it are 1 and itself.
7. If $\mathrm{p}(\mathrm{x})$ is an irreducible polynomial then the set of polynomials in $\left(\right.$ Field $\left._{2}[x]\right) \bmod \mathrm{p}(\mathrm{x})$ form a field

Examples: If including plaintext or ciphertext or other data it is often helpful to write them using typewriter text.

1. Eulers Example 1.

- Example: Compute last 3 digits of 3^{80403} What is $3^{80403}(\bmod 1000)$?
- Use Eulers Thrm: Need $\varphi(1000)$ The only primes that divide 1000 are 2 and 5
- $\varphi(1000)=1000 \prod_{p \mid 1000}\left(\frac{p-1}{p}\right)=1000\left(\frac{1}{2}\right)\left(\frac{4}{5}\right)=400$
- Since $80403 \equiv 3(\bmod 1000), 3^{80403} \equiv 3^{3}(\bmod 1000) \equiv 27(\bmod 1000)$
- Last 3 digits are ($0,2,7$)

2. What is $\left(\right.$ Field $\left._{4}\right)$? Look at the ring Field ${ }_{2}[x]$ This is the set of all polynomials with coefficients in Field 2 .

- How do we do arithmetic in Field $_{2}[x]$?
- Arithmetic is the same as usual with polynomials except we reduce all the coefficients modulo 2 at the end.
- $f(x)=x^{3}+0 x^{2}+x+1=x^{3}+x+1$
- $g(x)=x^{2}+x+0=x^{2}+x$
$-\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ The x's cancel, to get $x^{3}+x^{2}+0 x+1$
- $\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x})$
$-\left(x^{3}+x+1\right)\left(x^{2}+x\right)=x^{5}+x^{4}+x^{3}+0 x^{2}+x$

3. How can we divide one polynomial into another with a remainder? Long division with remainder still works for polynomial divide $f(x)$ by $g(x)$ and find the remainder.

- $\frac{x^{3}+0 x^{2}+x+1}{x^{2}+x}=x^{3}+x+1 \equiv 1\left(\bmod \left(x^{2}+x\right)\right)$
- Claim $p(x)=x^{2}+x+1$ is irreducible in $\left(\right.$ Field $\left._{2}[x]\right)$
- The only option for smaller polynomials are $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+1$
- Note: $f(x) f(x)=x * x=x^{2}, f(x) * g(x)=x^{2}+x, g(x) * g(x)=x^{2}+1$ Is Irreducible
- So the polynomials mod $x^{2}+x+1$ form a field, What are the possible remainders when dividing $x^{2}+x+1$.

4. This is $\left(\right.$ Field $\left._{4}\right)$

+	0	1	X	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0
*	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	x

