MATH 314-Class Notes

9/19/2017
Scribe: Christian Fortuna
Summary: Today's class covered the Chinese Remainder Theorem, Modular Exponentiation, and Fermat's little theorem.

Notes: Chinese Remainder Theorem

If m, n are two moduli and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$
Then, for any $a(\bmod m)$ and $b(\bmod n)$
There is exactly one residue $\mathrm{c}(\bmod \mathrm{mn})$ such that $\mathrm{c} \equiv \mathrm{a}(\bmod m)$ and $\mathrm{c} \equiv \mathrm{b}(\bmod \mathrm{n})$
Example: $\mathrm{m}=2 \mathrm{n}=13$
$\mathrm{a} \equiv 0(\bmod 2) \mathrm{b} \equiv 5(\bmod 13)$
The unique solution to these equations modulo 26 is c $\equiv 18(\bmod 26)$
Example: Find x such that $\mathrm{x} \equiv 3(\bmod 7)$ and $\mathrm{x} \equiv 11(\bmod 13)$
We need to find $\mathrm{x}(\bmod 91)$
since $\mathrm{x} \equiv 3 \bmod 7 \mathrm{x}=3+7 \mathrm{k}$ for some k
Plug this into the equation $(\bmod 13)$
$3+7 \mathrm{k} \equiv 11(\bmod 13) 7 \mathrm{k} \equiv 8(\bmod 13) 7^{-1} \equiv 2(\bmod 13) 2(7 \mathrm{k})=2(8)(\bmod 13) \mathrm{k} \equiv 3(\bmod 13)$
so, $\mathrm{x}=3+7(3)=24(\bmod 91)$
finding the $7^{-1}(\bmod 13)$ using Euclid's algo.
$\operatorname{gcd}(13,7)=1$
while $\mathrm{x}!=1 \mathrm{n}=\mathrm{n}+1 \mathrm{x}=\left(7^{*} \mathrm{n}\right)$
the inverse would be what n is equal to once $x=1$
Modular Exponentiation
Compute $3^{521}(\bmod 19)$
Write 521 in binary
$512=1 ; 256=0 ; 128=0 ; 64=0 ; 32=0 ; 16=0 ; 8=1 ; 4=0 ; 2=0 ; 1=1 ;$
1000001001
$512+8+1=521$
trick: repeated squaring
basically, 3^{521} can be rewritten as: $3^{2}=9=\left(3^{2}\right)^{2}=81=\left(3^{4}\right)^{2}=6561$ and so on... until you get to 512 .
remember the binaries. $512+8+1=521$ so, $3^{512}+3^{8}+3^{1}=w h a t 3^{521}$ is going to be .

Fermat's little theorem

if p is a prime number and a is not a divisible by p then $a^{p-1} \equiv 1(\bmod \mathrm{p})$
Example: $P=5 a=2$ check $2^{5-1} \equiv 16 \equiv 1(\bmod 5)$ check $3^{5-1} \equiv 81 \equiv 1(\bmod 5)$ check $2^{7-1} \equiv$ $64 \equiv 1(\bmod 7)$
When computing exponents modulo a prime number p we can reduce the exponent (mod $\mathrm{p}-1)$

