MATH 314 - Class Notes

09/14/2017
Scribe: Simranjeet Dulkoo
Summary: Insert a short summary of what today's class covered.

Notes:

Number Theory
How do we compute gcds?
Example

- Compute $\operatorname{GCD}(12,21)=3$
- Factor both of the numbers and take the factor they have in common

Euclids Algorithm

Think about the division with a remainder
Any number diving both a and b also divides r .

Euclids Observation:

$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{r})$, where r is the remainder when dividing a by b
Repeat this!
Eventually we won't have a remainder
Example
Compute GCD $(12,21)$

$$
\begin{gathered}
21=1 * 12+9 \\
\operatorname{gcd}(21,12) \rightarrow \operatorname{gcd}(12,9) \\
12=1 * 9+3 \\
\operatorname{gcd}(12,9) \rightarrow \operatorname{gcd}(9,3) \\
9=3 * 3+0
\end{gathered}
$$

$\operatorname{gcd}(21,12)=3$

- Euclids Algorthims is super fast for huge numbers
- Factoring is "slow"

Theorem:

- If $\operatorname{gcd}(a, b)=d$ then there exists integer x, y such that
- $a x+b y=d$
- Working backwards through Euclids Algorithm allows us to find x, y

Compute

$$
\begin{aligned}
\operatorname{gcd}(21,12) & \rightarrow 21=1^{*} 12+9 \\
\operatorname{gcd}(12,9) & \rightarrow 12=1^{*} 9+3
\end{aligned}
$$

$$
\begin{gathered}
\text { Plug it in: } \\
9=21-(-12) \\
3=12-1(9) \\
3=12-1(21-1(-12)) \\
3=-1(21)+2(21) \\
3=2(21)-1(12)
\end{gathered}
$$

Example
Find the $\operatorname{gcd}(79,19)=\mathrm{d}$ also find x, y

$$
\underline{\mathrm{x}} 79+\underline{\mathrm{y}} 19=\mathrm{d}
$$

Step 1: Euclids algorithm Forward

$$
\begin{gathered}
\operatorname{gcd}(79,19) \rightarrow 79=4^{*} 19+3 \\
\operatorname{gcd}(19,3) \rightarrow 19=6 * 3+1 \\
\operatorname{gcd}(3,1) \rightarrow 3=3(1)+0 \\
\operatorname{gcd}(\mathbf{7 9}, \mathbf{1 9})=\mathbf{1}
\end{gathered}
$$

Step 2: Work backwards

$$
\begin{gathered}
79=4^{*} 19+3 \rightarrow 3=79-4(19) \\
19=6^{*} 3+1 \rightarrow 1=19-6(3)
\end{gathered}
$$

Expand

$$
\begin{gathered}
1=19-6(3) \\
1=19-6(79-4(19)) \\
1=-6(79)+25(19) \\
\mathbf{1}=\mathbf{2 5 (1 9)}-\mathbf{6 (7 9) (\operatorname { m o d } \mathbf { 7 9 })} \\
\operatorname{gcd}(\mathbf{7 9}, \mathbf{1 9}) \mathbf{x}=\mathbf{- 6}, \mathbf{y}=\mathbf{2 5}, \mathbf{d}=\mathbf{1}
\end{gathered}
$$

- If we want to find the inverse of a mod b we use Euclids Algorithm to find x, y such that $\mathrm{ax}+\mathrm{by}=\mathrm{d}$
- Then the inverse of a is x
- we can now do Arithmetic for any modulus m possible values are ($0,1, \ldots, \mathrm{~m}-1$) call these numbers residue ($\bmod \mathrm{m}$) do arthmetic on these residues
- We can add, subtract and multiply (usual rules of arthmetics apply) is called a ring

