August 31, 2017 Class Notes

Nikki Backert

Caesar Cipher

Encryption:

$$
E(x)=x+\kappa \quad(\bmod 2) 6, \quad 0<=k<=25
$$

Decryption:

$$
D(X)=x-\kappa \quad(\bmod 2) 6
$$

Cryptanalysis

Kerchoff's Principle (1883)
Whenever you are analyzing the security of a cryptosystem, you should assume the enemy knows everything about the system except for the key being used.

Possible Attacks: Ciphertext only: Eve only has access to ciphertext of message - every modern cryptosystem protected against this Known plaintext attack: Eve has both plaintext and ciphertext of at least one message (she wants to determine the key) Chosen plaintext attack: Eve gets a copy of the encrption machine and can encrypt any plaintext she wants and observe the ciphertext (she wants to determine key) Chosen ciphertext attack: Least likely. Eve gets a copy of decryption machine, can decrypt any ciphertext she wants
Attack the Caesar cipher: Ciphertext only: frequency attack/analysis Brute force: try every possible key Known plaintext: Suppose we learn a plaintext "c" corresponds to the ciphertext " F "; we can determine key by shifting plaintext by $3(\mathrm{c}=2, \mathrm{f}=5) E(2) \equiv 5 \quad(\bmod 26) 2+K=5 \quad(\bmod 26) K \equiv 3 \quad(\bmod 26)$ Chosen plaintext: Encrypt "a" and know that shift of encrypted letter is $\mathrm{K}(\mathrm{a})$ $=0$ then the ciphertext is treated as a number is the key Chosen ciphertext: Choose "A" and shift backwards for key

Modular Arithmetic

We can work "modulo" any positive integer m. All arithmetic we do we take our answer and divide by m and take the remainder. For fixed m the only possible values are $0,1,2 \ldots \mathrm{~m}-1 . m \equiv 0 \equiv-m(\bmod m)$. Fractions not allowed with modular arithmetic. Addition, subtraction, multiplication always allowed Definition: The. number $a(\bmod m)$ has an inverse $b(\bmod m)$ if $a b=1$ $(\bmod m)$. In this case we call a invertible $(\bmod m)$.

Ex: $m=7 \alpha=4$ Let $\beta=2, \alpha * \beta=4 * 2=8 \quad(\bmod 7)=1 \quad(\bmod 7) \alpha^{-} 1=$ $2(\bmod 7)$
Theorem: $\alpha(\bmod m)$ is invertible modulo m if and only if $\operatorname{gcd}(\alpha, m)=1$.
Division is only allowed modulo m by invertible elements if $\operatorname{gcd}(\alpha, m)=1$, then to divide by α, multiply by α^{-1}.

Affine Cipher

$\operatorname{key}(\alpha, \beta) \quad(\bmod 26)$

$$
\begin{gathered}
E(x)=\alpha x+\beta \quad(\bmod 26) \\
D(Y)=Y=\alpha x+\beta \quad(\bmod 26) \\
Y-\text { beta }=\alpha x \quad(\bmod 26)
\end{gathered}
$$

Since m is 26 , to divide by α it cannot be 13 and it must be odd.

$$
\begin{gathered}
D(Y)=\alpha^{-1}(Y-\beta) \quad(\bmod 26) \\
Y-B=\alpha x \quad(\bmod 26) \\
\alpha^{-} 1(Y-B)=x \quad(\bmod 26)
\end{gathered}
$$

Ex: $\alpha=9, \beta=3$ Encrypt: "hi" (h=7, $\mathrm{i}=8$)

$$
\begin{gathered}
E(h)=\alpha x+\beta \quad(\bmod 26) \\
=9 * 7+3 \quad(\bmod 26) \\
=11+3 \quad(\bmod 26) \\
=14 \quad(\bmod 26) \\
\left.="{ }^{2}\right) \\
=72+3 \quad(\bmod 26)=20+3 \quad(\bmod 26) \\
=23 \quad(\bmod 26) \\
=" x " \\
" h i "=" O X "
\end{gathered}
$$

How many keys are there for the affine cipher? β has $(0,1 \ldots 25)=26$ possibilities α has $(1,3,5,7,9,11,15,17,19,21,23,25)=12$ possibilities
Total number of keys $=26 * 12=312$ possibilities

Attacks on Affine Cipher: Ciphertext only: frequency analysis, brute force attack
Known plaintext: Need to know 2 different letters to figure out key. Suppose g $=\mathrm{C}, \mathrm{j}=9, \mathrm{z}=25 \mathrm{z}=\mathrm{U}$

$$
\begin{aligned}
E(9) & =2 \quad(\bmod 26) \\
E(25) & =20 \quad(\bmod 26)
\end{aligned}
$$

$\alpha 9+\beta=2 \quad(\bmod 26)$
$-\alpha 25+\beta=20 \quad(\bmod 26)$
$\alpha 16=18 \quad(\bmod 26)(1)$
Multiply equation (1) by the inverse of 16 to find α and then plug into equation(1) to find β.

