# Class Notes Oct 312017 

Derek Stachowiak

November 30, 2017

Finishing SAES example
End round 1: 0010111001001011
Substitute(Feed into S-Box): 1010111111010011
Put results from previous step into a matrix by filling down the rows $\left[\begin{array}{ll}1010 & 1101 \\ 1111 & 0011\end{array}\right]$
Shift columns $\left[\begin{array}{ll}1010 & 1101 \\ 0011 & 1111\end{array}\right]$
Read down columns: 1010001111011111
xor with round key: 1000011110101111
$\mathrm{C}=0010010001110000$

## AES:

10 Rounds
Skip mix columns in last round
128 bits of plain text
key is 128 , 196 or 256 bits in length
Differential cryptoanalysis is faster than brute force for 7 rounds. For this reason 10 rounds was chosen to be secure against future attacks.
almost all secure internet fraffic uses AES

The problem is you need the key to encrypt or decrypt. AES and DES are examples of symetric key algorithms, i.e. both Alice and Bob need the key and if anyone finds the key then the system is compromised.

## Big Innovation

Pubic key cryptography
Allows messages to be sent securely between two people who have no shared secret key

## Public key cryptography

Relies on trap door problem
Trap door problem: math problem that is easy to do one way but very difficult the other way

[^0]
[^0]:    Mathematician Rivest,Adelman and Shamir came up with RSA
    Trap door problem: Factoring
    Take two primes p,q
    Easy to multiply $n=p$ $q$
    Very hard to find $p$ and $q$ given $n$
    Five steps to RSA
    Alice will pick two prime numbers $\mathrm{p}, \mathrm{q}(120$ ish digits in length $)$
    $\mathrm{n}=\mathrm{p} * \mathrm{q}$
    She picks encryption exponent e (65537 is common)
    She publishes ( $\mathrm{n}, \mathrm{e}$ )
    Alice computes $\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$ (this is secret!)
    Compute $d=e^{-1}(\bmod \varphi(\mathrm{n}))$ using Euclids algorithm
    d is the decryption key (secret)

