MATH 314 - Class Notes

10/24/2017
Scribe: Megan Clark
Summary: We went over different mode of operation for enrypting larger than 64 bits and briefly began talking about AES/SAES.

DES:

- Key length is too short (56 bits) to be secure today
- First solution was 2 DES but a meet in the middle attack makes this insecure

3DES:

- 3 keys K1,K2,K3
- perform encryption by: $\mathrm{C}=(\mathrm{E}(\mathrm{K} 3)(\mathrm{E}(\mathrm{K} 2)(\mathrm{E}(\mathrm{K} 1(\mathrm{p})))))$
- what happens if we try a meet in the middle attack now? $\mathrm{D} k 3(\mathrm{C})=\mathrm{Ek} 2(\mathrm{Ek} 1(\mathrm{p}))$
- no matter how we try to manipulate the equation we always have 2 keys on one side of the equation and by having two you would need 2^{112} entries to store which is too big to store, so since this is too big to store it is secure against a meet in the middle attack

Actual 3DES:

- uses 2 keys K1, K2
- Encryption: $(\mathrm{E}(\mathrm{K} 1)(\mathrm{D}(\mathrm{K} 2)(\mathrm{E}(\mathrm{K} 1(\mathrm{p})))))=\mathrm{C}$
- Decryption: $(\mathrm{D}(\mathrm{K} 1)(\mathrm{E}(\mathrm{K} 2)(\mathrm{D}(\mathrm{K} 1(\mathrm{C})))))=\mathrm{P}$
- 3DES is still used today (considered secure) but better to use newer algorithms

How do you encrypt something larger than 64 bits?:

- First Solution:Break into blocks of 64-bits and encrypt each block seperately, this is called Electronic code book (ECB)
- Flaw of ECB: Same plaintext always encrypts to the same ciphertext
- use frequency analysis on entire blocks to perform an attack
- to solve this problem use different modes of operation

Modes of Operation:

- ECB is one mode of operation
- Cipher Block Chaining(CBC)
- Cipher feed back (CFB)
- Output-Feedback (OFB)
- Counter(CTR)

CBC:

- first break the plaintext into 64 but blocks: p1,p2,....
- Pick an initial C0 in cleartext (means without encryption)
- Method to compute blocks of cipher text:
- $\mathrm{Ci}=\mathrm{E}(\mathrm{Pi}+\mathrm{Ci}-1)$
- $\mathrm{Pi}=\mathrm{D}(\mathrm{Ci})+\mathrm{Ci}-1-\mathrm{Pi}$
- How does this solve the problem of ECB?
- Suppose we send the same message over and over again $\mathrm{P} 1=\mathrm{P} 2=\mathrm{P} 3$
- then $\mathrm{C} 1=\mathrm{E}(\mathrm{P} 1+\mathrm{C} 0), \mathrm{C} 2=\mathrm{E}(\mathrm{P} 2+\mathrm{C} 1)$
- Even though we have started off with p1 and p2 equal they are being XOR with different random bits so they are going to be completely different
- So C1 != C2 != C3, we use the previous ciphertext as a one-time pad to futher scramble the plaintext

- CBC Issues

- has issues with propogation, one error transmission confuses the decryption of later blocks

CFB:

- Break plaintext into 8-bit blocks (performing encryption one byte at a time)
- Fix $\mathrm{X} 1=$ random 64 bit string send in clear text
- Compute $\mathrm{Oi}=\mathrm{L} 8(\mathrm{E}(\mathrm{Xi})) \mathrm{L} 8=$ leftmost 8 bits
- $\mathrm{Ci}=\mathrm{Oi}+\mathrm{Pi}$
- $\mathrm{Xi}+1=\mathrm{R} 56(\mathrm{Xi})-$ Ci R56= rightmost 56 bits
- This is a one-time pad where encryption function is used to get the bits used on the pad

OFB:

- same set up as cipher feedback creat initial x1 as before
- compute:

$$
\begin{aligned}
& -\mathrm{Oi}=\mathrm{L} 8(\mathrm{E}(\mathrm{Xi})) \\
& -\mathrm{Ci}=\mathrm{Oi}+\mathrm{Pi}
\end{aligned}
$$

$$
-\mathrm{Xi}+1=\mathrm{R} 56(\mathrm{Xi})-\mathrm{Oi}
$$

- The only difference from ecb is for $x i+1$ we append it with Oi instead of Ci
- The benefit of OFB is that the Oi's cam be precomputed before the plaintext is known (it can help run faster)
- CFB is a little more secrue but OFB is faster

CTR:

- $\mathrm{Xi}=\mathrm{i}\left(\bmod 2^{64}\right)$ —-in binary
- $\mathrm{Oi}=\mathrm{L} 8(\mathrm{E}(\mathrm{Xi}))$
- $\mathrm{Ci}=\mathrm{Oi}+\mathrm{Pi}$
- Same benefits as OFB but easier to compute

AES: Advanced Encryption System

- By the mid 90's it was clear that DES needed to be replaced (main flaw: key length not long enough), now they could have chosen to just make the key longer but decided to undergo to fix all flaws
- NIST: called fir proposals for a replacement for DES using new cryptology advancements
- Flaws wanted corrected for DES:
- Longer key length
- 16 rounds slower than ideal(run faster)
- use math that is more clearly generated how the diffusion/confusion occur
- Mysterious SBOXES
- 5 different proposals were given NIST chose one called Rijndael(Raindoll)
- This became the new AES

AES:

- not fiestal system (lets us do fewer rounds)
- 4 key steps to a round of SAES
- 1. Add Round
- 2. Substitue
- 3. Shift Rows
- 4. Mix Columns

