Math 314 - Fall 2017

Worksheet 2

- Name 1:______Name 2:_____
 - (1) AES, one of the modern cryptosystems we will study uses $\mathbb{F}_{256} = \mathbb{F}_{2^8}$ created using the irreducible polynomial $x^8 + x^4 + x^3 + x + 1$ over $\mathbb{F}_2[x]$. We know how to add and multiply polynomials in this field, but how do we find inverses? The same as in \mathbb{F}_p , using Euclid's algorithm! Try this yourself to find the inverse of $x^3 + x + 1$ in this field.

(2) (On Back) Determine whether $x^2 \equiv 150 \pmod{1009}$ is solvable, first using Legendre symbols, then using Jacobi symbols.