Name 1: Name 2:
(1) AES, one of the modern cryptosystems we will study uses $\mathbb{F}_{256}=\mathbb{F}_{2^{8}}$ created using the irreducible polynomial $x^{8}+x^{4}+x^{3}+x+1$ over $\mathbb{F}_{2}[x]$. We know how to add and multiply polynomials in this field, but how do we find inverses? The same as in \mathbb{F}_{p}, using Euclid's algorithm! Try this yourself to find the inverse of $x^{3}+x+1$ in this field.
(2) (On Back) Determine whether $x^{2} \equiv 150(\bmod 1009)$ is solvable, first using Legendre symbols, then using Jacobi symbols.

