Name 1:
Name 2:
(1) Fill out the following table of exponents modulo 11.

| a^{1} | a^{2} | a^{3} | a^{4} | a^{5} | a^{6} | a^{7} | a^{8} | a^{9} | a^{10} | a^{11} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | | | | | | |
| 2 | 4 | 8 | 5 | | | | | | | |
| 3 | 9 | 5 | | | | | | | | |
| 4 | 5 | | | | | | | | | |
| 5 | | | | | | | | | | |
| 6 | | | | | | | | | | |
| 7 | | | | | | | | | | |
| 8 | | | | | | | | | | |
| 9 | | | | | | | | | | |
| 10 | | | | | | | | | | |

(2) What is special about the bases $a=2,6,7,8$?

These numbers are called primitive roots modulo p. (In this case $p=11$.)

Using Sage, find the primitive roots modulo $p=5,7,13,17,19 \ldots$ Make a guess for how many primitive roots there will be for any prime p. (Hint: it involves the φ function.)
(3) For which residues $b(\bmod 11)$ does the equation $x^{2} \equiv b(\bmod 11)$ have a solution?

These are the only residues that have a square root modulo 11 and are called quadratic residues modulo 11 . What are the quadratic residues modulo 13 ?

