Name: \qquad
\qquad

Elliptic Curve Diffie Hellman Key Exchange

Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve. If Alice and Bob wish to exchange a key they can follow the following steps.
They agree on a prime p and an elliptic curve, and a point P on this curve. Let's say they choose $p=23, E: y^{2}=x^{3}+5 x+1$ and $P=(4,4)$.
(1) Check that P is a point on their curve.
(2) To exchange a key using ECDHA with your partner, pick a secret number a : \qquad (For this exercise, pick a number between 9 and 15, make sure you don't pick the same number as your partner.)
Write a in binary: \qquad -.
(3) You wish to compute $a P$. We compute this using repeated doubling. Work out the values in the table: (Recall from your notes or book the rules for adding points on a curve. You can use sage to do the arithmetic modulo 23.)

P	
2 P	
4 P	
8 P	

(4) Now add together the relevant entries to produce your $a P$.
(5) Exchange this number with your partner and write down the number they send you Q : \qquad Now compute $a Q$, again using repeated doubling. Work out the values in the table:

Q	
2 Q	
4 Q	
8 Q	

(6) Finally add together the relevant entries to produce $a Q$. Do you and your partner get the same point? This point (or one of its coordinates, say the x -coordinate) is your secret key.

Elliptic Curve El Gamal

Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve. Alice wishes to create a public key so that others can send her messages securely using an Elliptic curve version of the El Gamal system.
To do this she does the following. She picks a large prime p. (Let's say she picks $p=8675309$) and an elliptic curve (Let's say she picks $E: y^{2}=x^{3}+2 x+1$.)
(1) Define this curve in sage using E = EllipticCurve (GF (8675309), $[2,1]$)
(2) Use sage to pick a random point α on this curve using alpha $=$ E.random_point() and a secret integer a using
$\mathrm{a}=$ ZZ.random_element(1000000). a is the private key, which should not be shared. Write it here a :
(3) Compute $\beta=a \times \alpha$. Alice's public key is ($E, p, \alpha, \beta)$. Write it here:
(4) Exchange public keys with your partner. Write their key ($E, p, \alpha^{\prime}, \beta^{\prime}$) here: (Note, they will have the same curve and prime, but different α and β.
(5) Now, send a message to your partner. Use m = E.random_point() to pick a point on the curve which will be your message and write it here: m :
(Note: There are various ways to encode a message as a point on a curve, we won't talk about them here.)
(6) Use sage to pick a random integer $k . \mathrm{k}=$ ZZ.random_element (1000000) Write it here k :
(7) Compute:
$y_{1}=k \times \alpha^{\prime}=$ $y_{2}=m+k \times \beta^{\prime}=$ \qquad
(8) Exchange these numbers with your partner, write their values here:
$y_{1}^{\prime}=$ \qquad
$y_{2}^{\prime}=$ \qquad
(9) Decrypt their message by computing $m^{\prime}=y_{2}^{\prime}-a \times y_{1}^{\prime}$: \qquad
(10) Check: Did you successfully decrypt their message? (Is your m^{\prime} equal to their m ?)

