Elliptic Curve Diffie Hellman Key Exchange

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. If Alice and Bob wish to exchange a key they can follow the following steps.

They agree on a prime p and an elliptic curve, and a point P on this curve. Let's say they choose p = 23, $E: y^2 = x^3 + 5x + 1$ and P = (4, 4).

(1) Check that P is a point on their curve.

- (2) To exchange a key using ECDHA with your partner, pick a secret number a :______(For this exercise, pick a number between 9 and 15, make sure you don't pick the same number as your partner.)
 Write a in binary: ______.
- (3) You wish to compute *aP*. We compute this using repeated doubling. Work out the values in the table: (Recall from your notes or book the rules for adding points on a curve. You can use sage to do the arithmetic modulo 23.)

Р	
$2\mathbf{P}$	
4P	
8P	

(4) Now add together the relevant entries to produce your aP.

(5) Exchange this number with your partner and write down the number they send you Q: ______. Now compute aQ, again using repeated doubling. Work out the values in the table:

Q	
2Q	
4Q	
8Q	

(6) Finally add together the relevant entries to produce aQ. Do you and your partner get the same point? This point (or one of its coordinates, say the x-coordinate) is your secret key.

Elliptic Curve El Gamal

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Alice wishes to create a public key so that others can send her messages securely using an Elliptic curve version of the El Gamal system.

To do this she does the following. She picks a large prime p. (Let's say she picks p = 8675309) and an elliptic curve (Let's say she picks $E : y^2 = x^3 + 2x + 1$.)

- (1) Define this curve in sage using E = EllipticCurve(GF(8675309),[2,1])
- (2) Use sage to pick a random point α on this curve using
 alpha = E.random_point() and a secret integer a using
 a = ZZ.random_element(1000000). a is the private key, which should not be shared. Write it here a : ______
- (3) Compute $\beta = a \times \alpha$. Alice's public key is (E, p, α, β) . Write it here:
- (4) Exchange public keys with your partner. Write their key (E, p, α', β') here: (Note, they will have the same curve and prime, but different α and β .
- (5) Now, send a message to your partner. Use m = E.random_point() to pick a point on the curve which will be your message and write it here: m:_____

(Note: There are various ways to encode a message as a point on a curve, we won't talk about them here.)

- (6) Use sage to pick a random integer k. k = ZZ.random_element(1000000) Write it here k : ______
- (7) Compute: $y_1 = k \times \alpha' =$ ______ $y_2 = m + k \times \beta' =$ ______
- (8) Exchange these numbers with your partner, write their values here: $y'_1 =$ ______ $y'_2 =$ ______
- (9) Decrypt their message by computing $m' = y'_2 - a \times y'_1$: ______
- (10) Check: Did you successfully decrypt their message? (Is your m' equal to their m?)