Class Notes
 Kathryn Bafford
 September 22, 2016

Euclid's Algorithm is fast.
If $a>b$, we can show that the total number of arithmetic operations required to compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is less than $\mathrm{C} \log a$ for a constant C . In big O notation this is $\mathrm{O}(\log a)$.

Modular Exponentiation:

Example: Suppose you want to compute 3^{521} (mod 19). If we compute 3^{521}, it is a number with 249 decimal digits. It would become difficult even for a computer.
Trick: Write the exponent in binary.

$$
\begin{aligned}
521 & =512+8+1 \\
& =2^{9}+2^{8}+2^{0}
\end{aligned}
$$

In binary it is: 1000001001
Use repeated squaring and reduce $(\bmod 19)$ after each step.

$$
\begin{aligned}
& 3^{1}=3(\bmod 19) \\
& 3^{2}=9(\bmod 19) \\
& 3^{4}=81(\bmod 19)=5(\bmod 19) \\
& 3^{8}=6(\bmod 19) \\
& 3^{16}=17(\bmod 19) \\
& 3^{32}=4(\bmod 19)
\end{aligned}
$$

$$
\begin{aligned}
& 3^{64}=16(\bmod 19) \\
& 3^{128}=9(\bmod 19) \\
& 3^{256}=5(\bmod 19) \\
& 3^{512}=6(\bmod 19) \quad\left(3^{512} i\left(3^{8}\right)\left(3^{1}\right)=(6)(6)(3)=i \quad(17)(3)=13(\bmod 19)\right.
\end{aligned}
$$

We computed 3^{512} (mod 19) by doing 12 multiplications where every number was smaller than 19. In general, modular exponentiation lets us compute $a^{n} \quad(\bmod m)$ using at most $2 \log n$ multiplications where no numbers are bigger than m.

General steps for Modular Exponentiation:

1. Write out exponent in binary. Find the position of the largest " 1 " in its binary representation. Call this " k "
2. Do repeated squaring of a ($\bmod m) k$ times. Save all steps.
3. Multiply the results of repeated squaring for every position where there was a " 1 " in the binary representation in step 1. Reduce the answer (mod m).

Fermat's Little Theorem:

If p is a prime number and a is not divisible by p, then $a^{p-1}=1(\bmod p)$.
Example: $\quad p=5$ and $a=2$

$$
2^{4}=16=1(\bmod 5)
$$

Example: $\quad \mathrm{p}=11$ and $\mathrm{a}=2$

$$
2^{10}=1024=1(\bmod 1)
$$

~ 11 divides 1023 because $1-0+2-3=0 \sim$

Non-example:

$$
p=6 \text { and } a=2
$$

$$
2^{5}=32=2(\bmod 6)
$$

Proof:

Let $\mathrm{S}=\{1,2,3, \ldots, \mathrm{p}-1\}$ (all non-zero residues).
Define

$$
\begin{aligned}
& \Psi \mathrm{a}(\mathrm{x})=\mathrm{S}-->\mathrm{S} \\
& \psi \mathrm{a}(\mathrm{x})=\mathrm{ax}(\bmod \mathrm{p})
\end{aligned}
$$

Check that $\Psi a(x)$ is one-to-one and onto. Now suppose we have two elements x and $y, x^{\neq} y$, but $\psi a(x)=\psi a(y)$. This means that $a x=$ ay. A has an inverse $(\bmod p) . \quad a^{-1} a x=a^{-1} a y \quad$ which results in $\mathrm{x}=\mathrm{y}$. Since $\psi a(x)$ is one-to-one $x=y$ is a contradiction.

Compute now: $\Psi a(1) * \Psi a(2) * \ldots * \Psi a(p-1)$

$$
\begin{aligned}
& =\mathrm{a} * 2 \mathrm{a} * 3 \mathrm{a} * \ldots *(\mathrm{p}-1) \mathrm{a} \\
& =a^{p-1}(1 * 2 * 3 * \ldots *(\mathrm{p}-1))
\end{aligned}
$$

$$
\psi \mathrm{a}(1) * \Psi_{\mathrm{a}}(2) * \ldots * \Psi \mathrm{a}(\mathrm{p}-1)=1 * 2 * 3 * \ldots *(\mathrm{p}-1)
$$

$$
a^{p-1}(1 * 2 * 3 * \ldots *(p-1))=(1 * 2 * 3 * \ldots *(p-1))(\bmod p)
$$

$$
a^{p-1}=1(\bmod p)
$$

Example: Compute $2^{64}(\bmod 11)$
By FLT, we know $2^{10}=1(\bmod 11)$

$$
\begin{aligned}
& 2^{64}=\underset{i}{(6 i 10)^{6}} \quad 2^{4} \quad(\bmod 11) \\
& 2^{64}=1^{6} \quad 2^{4}(\bmod 11) \\
& 2^{64}=16(\bmod 11) \\
& 2^{64}=5(\bmod 11)
\end{aligned}
$$

Like to have a version of FLT for composite numbers.
Euler's Theorem work for composite numbers. Need Euler's φ (phi) function. This counts how many residues (r) modulo n have $\operatorname{gcd} 1$ with $\mathrm{n} . \operatorname{gcd}(\mathrm{r}, \mathrm{n})=1$

Example: $\varphi(26)=12$
No evens or 13
$\varphi(27)=18$
$\varphi(29)=28$
So if p is a prime number $\varphi(p)=p-1$
If $\mathrm{n}=p^{k}, \varphi(\mathrm{n})=\varphi\left(p^{k}\right)=\left(\frac{p-1}{p}\right) p^{k}$

Example: $\quad 27=3^{3}$

$$
\varphi(27)=\varphi\left(3^{3}\right)=\left(\frac{2}{3}\right) 3^{3}=2 * 3^{2}=18
$$

Using the Chinese Remainder Theorem, if m and n have $\operatorname{gcd}(m, n)=1$, then
$\varphi(\mathrm{mn})=\varphi(\mathrm{m}) * \varphi(\mathrm{n}) . \quad \varphi\left(p^{k} * q^{\prime}\right)=p^{k} * q^{\prime} \quad\left(\frac{p-1}{p}\right)\left(\frac{q-1}{q}\right)$

Theorem: For any n

$$
\varphi(\mathrm{n})=\mathrm{n} \pi\left(\frac{p-1}{p}\right)
$$

