Class Notes

Kathryn Bafford September 22, 2016

Euclid's Algorithm is fast.

If a>b, we can show that the total number of arithmetic operations required to compute gcd(a,b) is less than C $\log a$ for a constant C. In big O notation this is O($\log a$).

Modular Exponentiation:

<u>Example:</u> Suppose you want to compute 3^{521} (mod 19). If we compute 3^{521} , it is a number with 249 decimal digits. It would become difficult even for a computer.

Trick: Write the exponent in binary.

$$521 = 512 + 8 + 1$$
$$= 2^9 + 2^8 + 2^0$$

In binary it is: 1000001001

Use repeated squaring and reduce (mod 19) after each step.

$$3^1 = 3 \pmod{19}$$

$$3^2 = 9 \pmod{19}$$

$$3^4$$
 = 81 (mod 19) = 5 (mod 19)

$$3^8 = 6 \pmod{19}$$

$$3^{16} = 17 \pmod{19}$$

 $3^{32} = 4 \pmod{19}$

$$3^{64} = 16 \pmod{19}$$

$$3^{128} = 9 \pmod{19}$$

$$3^{256} = 5 \pmod{19}$$

$$3^{512} = 6 \pmod{19}$$

($3^{512} i (3^8) (3^1) = (6)(6)(3) = i \pmod{19}$

We computed $3^{512} \pmod{19}$ by doing 12 multiplications where every number was smaller than 19. In general, modular exponentiation lets us compute $a^n \pmod{m}$ using at most 2 $\log n$ multiplications where no numbers are bigger than m.

General steps for Modular Exponentiation:

- 1. Write out exponent in binary. Find the position of the largest "1" in its binary representation. Call this "k"
- 2. Do repeated squaring of a (mod m) k times. Save all steps.
- 3. Multiply the results of repeated squaring for every position where there was a
 - "1" in the binary representation in step 1. Reduce the answer (mod m).

Fermat's Little Theorem:

If p is a prime number and a is not divisible by p, then $a^{p-1} = 1 \pmod{p}$.

Example: p = 5 and a = 2 $2^4 = 16 = 1 \pmod{5}$

Example: p = 11 and a = 2

 $2^{10} = 1024 = 1 \pmod{1}$

~11 divides 1023 because 1-0+2-3 = 0~

<u>Non-example</u>: p = 6 and a = 2

$$2^5$$
 = 32 = 2 (mod 6)

Proof:

Let $S = \{1, 2, 3, ..., p-1\}$ (all non-zero residues).

Define

 $\Psi a(x) = S --> S$

 $\Psi a(x) = ax \pmod{p}$

Check that $\Psi a(x)$ is one-to-one and onto. Now suppose we have two elements x and y, $x \neq y$, but $\Psi a(x) = \Psi a(y)$. This means that ax = ay. A has an inverse (mod p). $a^{-1}ax = a^{-1}ay$ which results in x = y. Since $\Psi a(x)$ is one-to-one x = y is a contradiction.

Compute now: Ψa(1)* Ψa(2)* ... * Ψa(p-1)

= a * 2a * 3a * ... * (p-1)a $= a^{p-1} (1 * 2 * 3 * ... * (p-1))$ $\Psi a(1) * \Psi a(2) * ... * \Psi a(p-1) = 1 * 2 * 3 * ... * (p-1)$

$$a^{p^{-1}}$$
 (1 * 2 * 3 * ... * (p-1)) = (1 * 2 * 3 * ... * (p-1)) (mod p)

 $a^{p-1} = 1 \pmod{p}$

Example: Compute 2⁶⁴ (mod 11)

By FLT, we know $2^{10} = 1 \pmod{11}$

$$2^{64} = \frac{2}{(ii10)^6} \quad 2^4 \pmod{11}$$
$$2^{64} = 1^6 \quad 2^4 \pmod{11}$$
$$2^{64} = 16 \pmod{11}$$

 $2^{64} = 5 \pmod{11}$

Like to have a version of FLT for composite numbers.

Euler's Theorem work for composite numbers. Need Euler's φ (phi) function. This counts how many residues (r) modulo n have gcd 1 with n. gcd(r,n) = 1

Example:
$$\phi(26) = 12$$

No evens or 13
 $\phi(27) = 18$
 $\phi(29) = 28$

So if p is a prime number $\varphi(p) = p-1$

If
$$n = p^{k}$$
, $\phi(n) = \phi(p^{k}) = (\frac{p-1}{p}) p^{k}$

<u>Example:</u> $27 = 3^3$

$$\varphi(27) = \varphi(3^3) = (\frac{2}{3}) 3^3 = 2 * 3^2 = 18$$

Using the Chinese Remainder Theorem, if m and n have gcd(m,n) = 1, then $\varphi(mn) = \varphi(m) * \varphi(n)$. $\varphi(p^k * q^l) = p^k * q^l (\frac{p-1}{p}) (\frac{q-1}{q})$

Theorem: For any n

$$\varphi(n) = n \pi \left(\frac{p-1}{p} \right)$$