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Euclid’s Algorithm is fast.  

If a>b, we can show that the total number of arithmetic operations required 

to compute gcd(a,b) is less than C log a  for a constant C.  In big O notation 

this is O( log a ).

Modular Exponentiation:

Example: Suppose you want to compute 3521
 (mod 19). If we compute

3521
, it is a number with 249 decimal digits.  It would become 

difficult even for a computer. 

Trick: Write the exponent in binary.

521 = 512 + 8 + 1 

       = 29
+28

+20

In binary it is:      1000001001

Use repeated squaring and reduce (mod 19) after each step.

31
 = 3 (mod 19)

32
 = 9 (mod 19)

34
 = 81 (mod 19) = 5 (mod 19)

38
 = 6 (mod 19)

316
 = 17 (mod 19)

332
 = 4 (mod 19)



364
 = 16 (mod 19)

3128
 = 9 (mod 19)

3256
 = 5 (mod 19)

3512
 = 6 (mod 19) ( 3512

¿ (38 ) (31)=(6 ) (6 ) (3 )=¿  (17)(3) = 13 (mod 19)

We computed 3512
 (mod 19) by doing 12 multiplications where every 

number was smaller than 19.  In general, modular exponentiation lets us 

compute an
 (mod m) using at most 2 log n  multiplications where no 

numbers are bigger than m.

General steps for Modular Exponentiation:

1.Write out exponent in binary.  Find the position of the largest “1” in its binary 

representation.  Call this “k”

2.Do repeated squaring of a (mod m) k times.  Save all steps.

3.Multiply the results of repeated squaring for every position where there was a 

“1” in the binary representation in step 1.  Reduce the answer (mod m).

Fermat’s Little Theorem:

If p is a prime number and a is not divisible by p, then ap−1

= 1 (mod p).

Example: p = 5 and a = 2

24
 = 16 = 1 (mod 5)

Example: p = 11 and a = 2

210
 = 1024 = 1 (mod 1)

~11 divides 1023 because 1-0+2-3 = 0~

Non-example:  p = 6 and a = 2



25

 = 32 = 2 (mod 6)

Proof:

Let S = {1, 2, 3, …, p-1} (all non-zero residues).  

Define  Ψa(x) = S --> S

Ψa(x) = ax (mod p)

Check that Ψa(x) is one-to-one and onto.  Now suppose we have two 

elements x and y, x ≠  y, but Ψa(x) = Ψa(y).  This means that ax = 

ay.  A has an inverse (mod p).  a−1ax  = a−1ay  which results in x = y.

Since Ψa(x) is one-to-one x = y is a contradiction.  

Compute now: Ψa(1)* Ψa(2)* … * Ψa(p-1)

= a * 2a * 3a * … * (p-1)a

= ap−1
(1 * 2 * 3 * … * (p-1))

Ψa(1)* Ψa(2)* … * Ψa(p-1) = 1 * 2 * 3 * … * (p-1)

ap−1
(1 * 2 * 3 * … * (p-1)) = (1 * 2 * 3 * … * (p-1)) (mod p)

ap−1
 = 1 (mod p)

Example: Compute 264
 (mod 11)

By FLT, we know 210
 = 1 (mod 11)

264
 = 

2
(¿¿10)

6

¿
 24

 (mod 11)

264
 =  16

 24
 (mod 11)

264
 = 16 (mod 11)

264
 = 5 (mod 11)



Like to have a version of FLT for composite numbers.  

Euler’s Theorem work for composite numbers.  Need Euler’s φ (phi) function. 
This counts how many residues (r) modulo n have gcd 1 with n.  gcd(r,n) = 1

Example: φ(26)  =12

*No evens or 13*

φ(27) = 18

φ(29) = 28

So if p is a prime number φ(p) = p-1

If n = pk
 ,  φ(n) = φ( pk

) = (
p−1
p ) pk

Example: 27 = 33
 

φ(27) = φ( 33
) = (

2
3 ) 33

 = 2 * 32
 = 18

Using the Chinese Remainder Theorem, if m and n have gcd(m,n) = 1, then 

φ(mn) = φ(m) * φ(n).  φ( pk
 * ql

) = pk
* ql

  (
p−1
p ) (

q−1
q )

Theorem:   For any n

φ(n) = n π (
p−1
p )


