MATH 314 - Class Notes
 9/20/2016

Scribe: Megan Wysocki
Summary: In today's class we went over Mission 3 (Homework 3), reviewed the Euclidean Algorithm, discussed congruences, residues and rings, and reviewed sage as well. The Euclidean Algorithm is used to calculate the GCD and is known as division with remainder. One of the most basic and useful notions in number theory is modular arithmetic. Modular arithmetic is used with congruences. The definition of congruences is as follows: "Let a, b, n be integers with $n!=0$. We say that $a=b(\bmod \mathrm{n})$.

Notes: Include detailed notes from the lecture or class activities. Format your notes nicely using latex such as

- Euclidean Algorithm

- Find x, y for $19 x+79 y=1$
* Step1 Euclidean Forward
- $79=4(19)+3$
- $19=6(3)+1$
- $3=3(1)+0$
- Zero tells you whatever your last remainder was is your GCD
- Therefore, 1 was your remainder before 0 , so the $\operatorname{GCD}(79,19)=1$
* Step 2 Work Backwards
- $79-4(19)=3$
- $19-6(3)=1$
- $19-6[79-4(19)]=1$
- $19-6(79)+24(19)=1$
- $25(19)-6(79)=1$
* Find $19^{-1}(\bmod 79)$ using the equation $25(19)-6(79)=1$
- $-6(79) \bmod 79=0$
- Therefore, $25(19)=1 \bmod 79$
- $19^{-1}=25 \bmod 79$
- Conclusion: To compute $a^{-1}(\bmod n)$ we use Euclidean Algorithm to find x,y such that $a x+n y=1$, then $a^{-1}=x(\bmod \mathrm{n})$

- Residues and Rings

- If n is any positive integer, then the possible remainder modulo n are $(0,1,2, \ldots, n-1)$
* we call these residues modulo n
* we can add or subtract residues mod n
* we can also multiply any two residues modulo n
- Any collection of objects that you can add, subtract, and multiply while using the usual rules of arithmetic apply is called a ring.
* Residues modulo n form a ring for any positive integer n .
* Other examples of rings:
- $2 x 2$ matrix or nxn matrix
- Real Numbers
- Integers
- Rational Numbers (Any number you can write as a function)
- All Polynomials with variable x
- Note: take Math 369 to learn more about rings

- Chinese Remainder Theorem

- this is a useful tool for solving equations: $\bmod n$
- If m, n are integers with $G C D(m, n)=1$ then for any a,b there exists exactly one solution to $x=a(\bmod m)$ and $x=b(\bmod \mathrm{n})$ modulo $m n$.
- Example1: Suppose $x=17(\bmod 26)$
* $x=17+k(26)$
- Note: we can factor 26 so that $26=13 * 2$
* if $x=17(\bmod 26)$, then $x=1(\bmod 2)$
* if $x=17(\bmod 26)$, then $x=4(\bmod 13)$
- Note: You can check all other residues (mod 26), 17 is the only one that satisfies $17=1(\bmod 2)$ and $17=4(\bmod 13)$
* $x=17(\bmod 26)$ iff $\mathrm{i}=\mathrm{i} x=1(\bmod 2)$ and $x=4(\bmod 13)$
- Example2:Find x such that $x=3(\bmod 7)$ and $x=11(\bmod 13)$
* Note: solution $=$ number or residue modulo 91
- (mod $7, \bmod 13)$
. $7 * 13=91$
* Therefore,
- $x=3(\bmod 7)$
- $x=3+k(7)$ needs to be congruent to $x=11(\bmod 13)$
$\cdot 3+k(7)=11(\bmod 13)$
- SUBTRACT THE THREE FROM BOTH SIDES
- $k(7)=8(\bmod 13)$
* Step 1: use Euclidean Algorithm to solve $7^{-1}(\bmod 13)$
- $13=1(7)+6$
- $7=1(6)+1$
- $6=6(1)+0$
* Step 2
- $1=7-1(6)$
- $1=7-1[13-1(7)]$
- $1=7-13+7$
- $1=2(7)-13$
- $1=2(7)(\bmod 13)-13(\bmod 13)$
- Note: $13(\bmod 13)=0$
- $1=2(7)(\bmod 13)$
- Therefore, $7^{-1}=2(\bmod 13)$

* Step 3

- refer back to formula from Step 1:
- $k(7)=8(\bmod 13)$
- Multiply formula by $7^{-1}=2$
- $k=16(\bmod 13)$
- $k=3(\bmod 13)$
* Step 4
- Take $k=3$
- $x=3+k(7)$
- $=3+3(7)$
- $=24$
- $x=24(\bmod 91)==x=3(\bmod 7)$ and $x=11(\bmod 13)$
- Therefore we have solved for the congruency
- Sage Practice For Assignment 3

Look at the handouts folder and click functions.

