Lecture for 9-15-2016

Hai Tran

Conditional Probability
Suppose you study how weather in the morning compare to weather in the afternoon, you find that the frequency of event occurring are :

Morning Afternoon	sunny	rainy	snowy
sunny	$1 / 5$	$1 / 10$	0
rainy	$1 / 10$	$1 / 5$	$1 / 10$
snowy	0	$1 / 10$	$1 / 10$

Today: Rainy this morning, what is the probability it will be sunny this afternoon?
$P($ sunny this afternoon \mid rainy this morning $)=\frac{1}{4}$
$P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
$P($ rainy in morning $)=\frac{4}{10}$
$P($ rainy morning and sunny afternoon $)=\frac{1}{10}$
Thus $P(A \mid B)=\frac{\frac{1}{10}}{\frac{4}{10}}=\frac{1}{4}$

Perfect Secrecy

A system has perfect secrecy if for any message m and any key k, P (original message was $\mathrm{m} \mid$ ciphertext Eve capture is C$)=P($ original message was m)

Suppose that Alice and Bob are exchanging messages that are either a or b and they have 3 possible keys $\mathrm{k} 1, \mathrm{k} 2$ and k 3 All 3 keys are equally likely of the time Bob sends a of the time Bob sends b

Encryption system

	K_{1}	K_{2}	K_{3}
a	1	2	3
b	2	3	4

Suppose Eve intercepts the ciphertext $\mathrm{C}=2$ Eve wants to compute: $P(m=$ $a \mid C=2$) Thus

$$
\begin{aligned}
\frac{P(m=a \text { and } c=2)}{P(c=2)} & =\frac{P\left(\text { key was } k_{2} \text { and the message was } a\right)}{P\left(\text { key is } k_{1} \text { and } m=b\right)+P\left(\text { key is } k_{2} \text { and } m=a\right)} \\
& =\frac{P\left(\text { key was } k_{2}\right) \times P(m=a)}{P\left(\text { key was } k_{1}\right) \times P(m=b)+P\left(\text { key was } k_{2}\right) \times P(m=a)} \\
& =\frac{\frac{1}{3} \times \frac{1}{4}}{\frac{1}{3} \times \frac{3}{4}+\frac{1}{3} \times \frac{1}{4}}=\frac{\frac{1}{12}}{\frac{3}{12}+\frac{1}{12}}=\frac{\frac{1}{12}}{\frac{4}{12}}=\frac{1}{4}=P(m=a)
\end{aligned}
$$

Eve didnt learn anything
Suppose Eve intercepts the cipher text $C=1 \mathrm{P}(\mathrm{m}=\mathrm{a}-\mathrm{C}=1)$:
$\frac{P(m=a \text { and } C=1)}{P(C=1)}=\frac{P(m=a) \times P\left(\text { key was } k_{1}\right)}{P(m=a) \times P\left(\text { key was } k_{1}\right)}=\frac{\frac{1}{4} \times \frac{1}{3}}{\frac{1}{4} \times \frac{1}{3}}=1 \neq P(m=a)$.
Thus Eve learned something about the message so the system doesnt have perfect secrecy.

Theorem: the one time pad has perfect secrecy
Key to proof: Any massage can be encoded to any ciphertext by exactly one keyIssue with one time pad: Need to transmit a key.Impractical since keys can only be used once.

Facts from number theory

How do you compute GCDs? Greatest common divisor $\operatorname{GCD}(4,26)=$ Factor both numbers and use that to find the greatest factor
$\operatorname{GCD}(1317,56)=$ Try dividing both numbers by things until you find something

Euclidean Algorithm:

- compute GCD $(1317,56)$
- Do division with remainderGCD $(1317,56)=\operatorname{GCD}(56,29)=\operatorname{GCD}(29,27)$ $=\operatorname{GCD}(27,2)=\operatorname{GCD}(2,1)=1$

Idea: Keep doing division with remainder until the first time we get a remainder 0.

If $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=$ dthen there exsist x, y such that $\mathrm{xa}+\mathrm{yb}=\mathrm{d}$
$29=131723(56) 27=561(29) 2=29 \quad 1(27) 1=27-13(2)$
$1=2713(2)=27-13(29-27)=-12(27)-13(29)=\ldots=645(56) \quad 27(1317)$
(work backward)

