MATH 314 - Class Notes
 9/13/2016

Scribe: Abby Borowy

Summary: Today's class mainly covered the Hill Cipher and the One Time Pad and also briefly covered probability.

Notes:

Hill Cipher

- Encryption by multiplication by a matrix M
- The determinant of M and 26 must have a GCD of $1(\operatorname{GCD}(\operatorname{det}(m), 26)=1)$
- If $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det}(M)=a d-b c$ and $M^{-1}=(a d-b c)^{-1}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right](\bmod 26)$
- ENCRYPTION: Break the plaintext into blocks and multiply each block by the matrix M $E(<x, y>)=<x, y>\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=<x a+y c, x b+y d>$
- DECRYPTION: Multiply by M^{-1}
- Example 1 (Chosen Plaintext Attack)
- Suppose the secret key is in the form $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- Pick the plaintext $<0,1>. E(<0,1>)=<0,1>\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=<c, d>$
- Pick the plaintext $<1,0>. E(<1,0>)=<1,0>\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=<a, b>$
- The Hill Cipher works easily with large matrices as well as small ones
- It is difficult to multiply large matrices by hand, so Sage can be used (see Hill Example on Sage)
- Almost all modern cryptosystems are block ciphers, like the Hill Cipher

One Time Pad

- Recall that the Vigenere Cipher is hard to break when the message is not much longer than the key
- The One Time Pad involves picking a key that is the same exact length as the message
- The key is picked completely randomly so it's hard to guess
- A key is only used once
- The message is encrypted the exact same way as it would be using the Vigenere Cipher
- The One Time Pad has "perfect secrecy," meaning it is truly impossible to break
- Example 2 (Ciphertext-only Attack)
- Suppose we capture the message $\operatorname{SBY}(18,1,24)$
- Could the plaintext be dog? $(3,14,6)$
- If the plaintext is dog, the key would be $(15,13,18)$
- This is a possible key, but we cannot confirm it is the key
- There's no way of finding the key, as it can be any three-letter word
- The ciphertext doesn't tell us any information at all

Defining Perfect Secrecy Using Probability

- Conditional probability: the notation $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ means the probability of A happening if B happened
- Regular probability: $\mathrm{P}(\mathrm{M}=\mathrm{m})$ is the probability that the message being sent is " m "
- Let M be the message being sent and C be the ciphertext
- Then $P(M=m \mid C=d)$ is the probability that the original message was m if we know that the original ciphertext was d
- The system has "perfect secrecy" if $P(M=m \mid C=d)=P(M=m)$ for any message m
- C gives us no information about m

