MATH 314 - Class Notes

12/6/2016

Scribe: Aman Patel

Summary: Today we went over the Elliptic Curve and its relation to Cryptography

Notes:

- elliptic curves are not ellipses
- An elliptic curve is an equation in the form $y^{2}=x^{3}+a x+c$ where $4 a^{3}+27 c^{2} \neq 0$
- If you take 2 points on an elliptic curve and draw a line between them, then this line intersects the curve at a third point
- If the coordinates of the first two points are rational, than the points of the third point will be rational as well
- We can use these to write down a way to "add" points and do "arithmetic" on them
- If there are two points P and Q where $P=(X 1, Y 1), Q=(X 2, Y 2)$, How do we find $\mathrm{P}+$ Q? Since $R=(X 3, Y 3)$ is on the curve $Y 3^{2}=X 3^{3}+A X 3+B$
- Find slope m of the line connecting P,Q. $m=(Y 2-Y 1) /(X 2-X 1)$ intercept $C=Y 1-M X 1$
- R satisfies both $y^{2}=x^{3}+a x+b$ and $y=m x+c$
- Substitute $(m x+c)^{2}=x^{3}+a x+b$
- $0=x^{3}-m^{2} x^{2}+x+c$ after foiling
- $=(x-x 1)(x-x 2)(x-x 3)$ where $\mathrm{x} 1, \mathrm{x} 2$, and x 3 are all roots
- $m^{2}=x 1+x 2+x 3$
- $y 3=m x 3+c$
- $P+Q=(X 3-Y 3) ~ i-$ Rule for points on an elliptic curve
- Ex) E: $y^{2}=x^{3}+x+6$
- $P=(2,4) Q=(3,-6)$
- Check these points are on E:
- $P: 4^{2}=16=8+2+6$
- $Q:(-6)^{2}=36=27+3+6$
- Find $P+Q$:
- $m=(-6-4) /(3-2)=-10$
- $c=-6-(-10) 3=24$
- $x 3=m^{2}-x 1-x 2$
- $=(-10)^{2}-2-3=95$
- $y 3=m x 3+c$
- $(-10)(95)+24=-926$
- $P+Q=(95,926)$
- Note: To add a point to itself we use the tangent line to the curve of the point. Use calculus to find slope
- $m=(3 x 1+a) / 2 y 1$
- If we add two points and get a vertical line then the line goes through the "point at infinity"
- Infinity is the identity
- Points on an elliptic curve form a group (Abelian group)

Discrete Log for Elliptic Curve:

1. Idea - If P is a point on an elliptic curve and k is an integer given P, K we can find KP easily $(\mathrm{P}+\mathrm{P}+\mathrm{P}+\mathrm{P}+\mathrm{P})(\mathrm{K}$ times $)$
2. Trick - Repeated Squaring. On the other hand given P, KP. It is hard to find K

Important Theorms:

1. Mordell Weil Theorm - If E is any elliptic curve, we can write a finite list of points P1,P2 ...Pk so that every rational point on the curve can be written as a sum of two points
2. Hasse's Theorm - If E is an elliptic curve $(\bmod \mathrm{p})$ and n is the number of points on E then: $|N-(P+1)| \leq 2 \sqrt{p}$
