
Class Notes, November 8th

Dalton Watts

Recall RSA: Public Key Cryptography
Basic Steps:
Pick 2 big prime numbers, p and q
n = p× q
Pick e where GCD(e, ϕ(n)) = 1
Secretly compute d ≡ e−1 (mod ϕ(n))
Encryption: En,e(m) = me (mod n) which anyone can do.
Decryption: Dn,d(c) = cd (mod n) which only Bob can do
To break RSA, Eve needs to factor n (which is very hard to do).

Timing attacks (discovered by an undergrad in 1994)
If you can time how long it takes Bob to do decryption you can use this to

figure out what d is.
Now systems add a small delay in the decryption Step to protect against

this.
More info on Timing Attacks in the book.
We’ll be focusing more on the direct mathematical attack. What does it

take to do it?
By default, we know m, n, e, and c. We don’t know p, q, nor d.

1

In order to implement RSA Bob needs to find 2 large primes p and q. He
does this by following three steps:

1) Chooses a random 120 digit number
2) Check to see if this number is prime
3) If it is, use it. If it isn’t, repeat from step 1.
How many primes are there? Infinitely many.
Less than x, though? Define the prime counting function π(x) = count how

many primes are less than or equal to x.
π(10) = 4
π(10.5) = 4
π(11) = 5
π(1987) = 300
Number of 120 digit primes would be π(10121)− π(10120)
π(x) ≈ x

ln(x)

1900 Mathematicians proved that this is a good approximation.
Prime number theorem: π(x) = x

ln(x) +O(x
(ln(x))2)

Better yet, some Calculus! π(x) =
∫ x

2
(1
ln(t))dt+O

(
x

e
√

ln x

)
Estimate for the number of 120 digit primes is approximately 3.2 ∗ 10118

Probability of choosing a 120 digit number that’s prime is 3.2∗10118/(10121−
10120) which is approximately 1

260 .
If we ignore even numbers (because all of them are divisible by 2), the

probability increases to 1
130 .

We can include parameters for other low primes, to increase the probability
even more, but even at 130 random picks, it isn’t hard for a computer to find a
prime number.

Now, how do we implement step 2?
Method 1: Check to see if the number is divisible by anything less than its

square root. But, if n has 120 digits, then the square root of n has about 60
digits. That’s still pretty big. Even if you could divide a trillion numbers every
second, this still takes longer than the age of the universe.

Previously discussed is the Fermat ”Primality” test.
Check if n is prime by picking a variable a such that 1 < a < n− 1
Compute an−1 (mod n)
If this is not 1, return ”composite”
Otherwise, it’s probably prime.
Repeat for several values of a to be more sure.
It’s not proven to be prime with this method, but it’s at least pseudo-prime.

Unfortunately that’s not good enough, and There also exist Carmichael numbers
that act as pseudo-primes for every base a.

2

Method 2: Miller-Rabin Test
Like Fermat, it is probabilistic. It’s probably a prime, and it’s less likely

that you’ll get pseudo-primes with this method, although it is still possible.
Check to see if n is prime.
For some integer k and odd integer m, write n− 1 = 2km.
Pick a random variable a between 1 < a < n− 1.
Step 1: Compute b0 ≡ am (mod n).
If b0 ≡ ±1 (mod n) return “Probably Prime”
Else: For i in [1..k − 1]:
Compute bi ≡ b2i−1 (mod n).
If bi ≡ 1 (mod n) return “Composite!”
If bi ≡ −1 (mod n) return “Probably Prime!”
If bk−1 6= ±1 return “Composite!”
If we want to be more certain after getting “Probably Prime” Try again with

another a.

Example 1: n = 13, a = 2
Write 13− 1 = 22 ∗ 3 such that k = 2,m = 3
Compute b0 ≡ 23 (mod 13)
b0 ≡ 8 (mod 13)
b1 ≡ b20 ≡ 82 ≡ 64 ≡ −1 (mod 13)

Example 2: n = 121, a = 3
n− 1 = 23 ∗ 15
b0 = a15 ≡ 315 ≡ 1 (mod 121)
Miller-Rabin says 121 is ”Probably Prime”
We call this a strong-pseudo prime. There are no ”Carmichael-like” numbers

for Miller-Rabin.
If n is any composite number then at least 3

4 of the choices for a prove that
n is composite usually this is much higher.

If you run Miller-Rabin 10 times with different values for a, if it’s still prob-
ably prime, the probability that it’s actually composite is less than (1

4)10 which
is less than one-in-a-million. If you run it 20 times, you get less than (one-in-a-
million)2

Miller-Rabin is still probabilistic
You can make it deterministic (provable prime) if you have to assume the

Riemann hypothesis is true. Unfortunately, nobody has proven it, and there’s
still a mathematical bounty available for anyone that can prove it.

In 2003, it was proved that proving a number is prime is a polynomial
running time problem.

The algorithm ”AKS” is too slow to be useful.
How would we attack RSA? Factoring, how do we do Factoring quickly?
What is the fastest way to factor?
Method 1: Want to factor n

3

Try dividing n by 2, 3, 4 . . . continue until you find a factor of n. (Note: you
can stop when you get to the square root.) This can take up to

√
n steps, which

is way to slow for n the size used in RSA.
Basic Principle of Factoring: If you can find 2 numbers x, y
where x2 ≡ y2 (mod n) but x 6≡ ±y (mod n)
Then n is composite and gcd(x− y, n) gives a nontrivial factor of n. (not 1

or n)
Proof: Suppose those two things are true. Let d = gcd(x− y, n)
Case 1: d = n. Then n divides x− y.
So, x− y ≡ 0 (mod n)
Such that x ≡ y (mod n)
We assume this doesn’t happen.
Case 2:d = 1
Since x2 ≡ y2 (mod n)
x2 − y2 ≡ 0 (mod n)
So n divides x2 − y2 = (x− y)(x+ y)
Since gcd(x− y, n) = 1
So, n divides x+ y
then x+ y ≡ 0 (mod n)
x ≡ −y (mod n)
Which we assumed was not the case. Thus d is a factor of n which is neither

1 nor n.

4

