MATH 314-Class Notes

11/29/2016
Scribe: Andy Gonzalez Campos
Summary: Digital Signatures General Ideas
Hash Functions: They take a message and convert it into a much shorter digest (hash).

- h: M - S
functions "h" should be harder to reverse, difficult to find "X" such that:
- $\mathrm{h}(\mathrm{x})=\mathrm{y}$

Collision Resistant:Hard to find two messages m1 and m2 $h(m 1)=h(m 2)$

Birthday Paradox:

Probability that 2 people in a room with " k " people share a birthday is:

$$
1-\frac{364}{365} \frac{363}{365} \frac{362}{365} \ldots \frac{366-k}{365}
$$

If " k " $=23$ then the probability is .503 In general if you have " n " things $(1,2,3, \ldots n)$ then pick ' k ' at random (unlimited supply of each). Probability 2 are the same

$$
1-\frac{n-1}{n} \frac{n-2}{n} \frac{n-3}{n} \ldots \frac{n-(k+1)}{n}=1-e^{\frac{k^{2}}{2 n}}
$$

- Digital Signatures

Used especially for:

Authentication: Bob can be sure Alice sent the message.
Non-Repudiation: Bob can prove to someone else that Alice sent the message.

- 1st. Idea: Scanning a digital copy of your real signature and put it at the bottom of the message.

Need Signature and Message to be connected

One Method: RSA Backward

Like RSA Alice has (n,e) - Public Key
(p,q,d) - Private (Only Alice Knows)
Alice wants to send a message, 'm' to Bob
She computes $m^{d} \bmod n=S$
She sends (m, s)
Bob uses Alice's public key, he computes $S^{e} \bmod n$ checks to see if this is $=m \bmod n$ If it is Bob accepts the signature, if not he rejects it

Why does this work?

$\left(S^{e} \bmod n=\left(m^{d}\right)^{e} \bmod n\right)=\left(\left(m^{d} e\right) \bmod n=m \bmod n\right)$

Why is it secure?

If Eve wants to pretend to be Alice she needs to be able to compute m^{d}, but this requires her to know Alice's private key.

General Idea of Signatures

Produce a signature using the message in a way that is only possible with knowledge of a private key. Want the signature to depend on the message in a way that can be verified using a public key.

- Set of Messages M
- Set of Signatures S
- Set of Keys K

Signature Function:
$h k: M->S$
Verification Function:
$V(x, y)=\ldots$. True if $h k(x)=y$
................... False if $h k(x)=/ y$

-El Gamal-

P - a large primer number
α - Primitive root $\bmod p$
a - Randomly Chosen in (2,3,4....p-2)
$\beta-\alpha^{a} \bmod p$
Public key is (P, α, β)

If Alice wants to sign a message 'm' using El Gamal.

Pick K randomly from (2,3,4...P-2)
Compute $r=\alpha^{k} \bmod p$
Compute $S=k^{-} 1(m-a r) \bmod p-1$
Signature is pair (r, S)
She sends (m, (r,s)) to Bob

To verify Bob computes
$V 1=B^{r} * r^{S} \bmod P$
$V 2=\alpha^{m} \bmod P$
Accept the signature if $V 1=V 2 \bmod P$
Rejects Otherwise

Why does this work?

- $S=K^{-} 1(m-a r) \bmod P-1$
- $S K=(m-a r) \bmod P-1$
- $m=(S k+a r) \bmod P-1$
- $\alpha^{m}=\alpha^{s} k+a r \bmod P$
- $\left(\alpha^{a}\right)^{r} *\left(\alpha^{k}\right)^{S}$
- $(B)^{r} *(r)^{S} V 1$

Why is this secure?
If Eve wants to pretend to be Alice. She needs to obtain a value of S that is valid for Alice's secret key 'a' she needs an 'S' where:
$\beta^{r} * r^{S}=\alpha^{m} \bmod P$
$r^{S}=\alpha^{m} * \beta^{-} r \bmod P$
Eve has to solve this for S-DLP is Hard

—Digital Signatures-

DSA $=$ Digital Signature Algorithm
Introduced by NIST in 1991
Pick $q=$ a prime with around 160 bits
pick $p=a(q+1)$ fr some a around 1024 bits
pick g $=$ primitive rood $\bmod P$
pick $\alpha=g^{(p-1) / q} \bmod P$
pick $\alpha^{a}=g^{p-1}=1 \bmod P$

-Steps for DSA-

1. Pick K randomly in ($1,2,3 \ldots \mathrm{q}-1$)
2. Compute $r=\alpha^{k}(\bmod P)(\bmod a)$
3. Compute $S=k^{-} 1(m+a r) \bmod q$
4. Digital Signature is (r, S)

-Verification-

1. Compute: $U 1=S^{-1} m \bmod q$
2. Compute: $U 2=S^{-1} r \bmod q$
3. Compute: $V=\left(\alpha^{U 1} \beta^{U 2} \bmod p\right) \bmod q$

If $\mathrm{V}=\mathrm{r}$ Accept; if otherwise, Reject

-Check That this works-

- $m=(S K-a r) \bmod q$
- $s^{-1} m=K-a r s^{-1} \bmod q$
- $K=S^{-1} m+a r s^{-1} \bmod q$
- $=u 1+a u 2 \bmod q$

-Now-

- $r \alpha^{k}=\alpha^{U 1+a u 2} \bmod P$
- $\alpha^{u 1} *\left(\alpha^{a}\right)^{u} 2 \bmod P$
- $\alpha^{u 1} \beta^{u 2} \bmod P$

Last step will only work if the Signature is Valid

—-Key Improvement is...-

$(r, s) \leqslant q$ - Much smaller than P
Key arithmetic occurs mod P large and so can be made secure using a large value of ' P '.
Since we want digital signatures to work for arbitrarily large messages 'm,' we can just use large messages; but it is better to use a hash function to make them short first instead.
In general we use a hash function to generate a digest $h(m)$, which is used to produce a signature instead,

