
MATH 314 - Class Notes

11/29/2016

Scribe: Andy Gonzalez Campos

Summary: Digital Signatures General Ideas
Hash Functions: They take a message and convert it into a much shorter digest (hash).

• h: M - S
functions ”h” should be harder to reverse, difficult to find ”X” such that:

• h(x)=y

Collision Resistant:Hard to find two messages m1 and m2 h(m1) = h(m2)

Birthday Paradox:
Probability that 2 people in a room with ”k” people share a birthday is:

1 − 364
365

363
365

362
365
...366−k

365

If ”k” = 23 then the probability is .503 In general if you have ”n” things (1,2,3,...n) then pick ’k’
at random (unlimited supply of each). Probability 2 are the same

1 − n−1
n

n−2
n

n−3
n
...n−(k+1)

n
= 1 − e

k2

2n

• Digital Signatures

Used especially for:
Authentication: Bob can be sure Alice sent the message.
Non-Repudiation: Bob can prove to someone else that Alice sent the message.

• 1st. Idea: Scanning a digital copy of your real signature and put it at the bottom of the
message.

Need Signature and Message to be connected

One Method: RSA Backward

Like RSA Alice has (n,e) - Public Key
(p,q,d) - Private (Only Alice Knows)
Alice wants to send a message, ’m’ to Bob
She computes md mod n = S
She sends (m,s)
Bob uses Alice’s public key, he computes Se mod n checks to see if this is = m mod n
If it is Bob accepts the signature, if not he rejects it

1

Why does this work?

(Se mod n = (md)e mod n) = ((mde) mod n = m mod n)

Why is it secure?

If Eve wants to pretend to be Alice she needs to be able to compute md, but this requires her to
know Alice’s private key.

General Idea of Signatures

Produce a signature using the message in a way that is only possible with knowledge of a private
key. Want the signature to depend on the message in a way that can be verified using a public
key.

• Set of Messages M

• Set of Signatures S

• Set of Keys K

Signature Function:
hk : M− > S

Verification Function:
V (x, y) = True if hk(x) = y

..................... False if hk(x) = /y

-El Gamal-

P - a large primer number
α - Primitive root mod p
a - Randomly Chosen in (2,3,4....p-2)
β - αa mod p
Public key is (P, α, β)

If Alice wants to sign a message ’m’ using El Gamal.

Pick K randomly from (2,3,4...P-2)

Compute r = αk mod p

Compute S = k−1(m− ar) mod p− 1

Signature is pair (r,S)

She sends (m, (r,s)) to Bob

2

To verify Bob computes
V 1 = Br ∗ rS mod P
V 2 = αm mod P
Accept the signature if V 1 = V 2 mod P
Rejects Otherwise

Why does this work?

• S = K−1(m− ar) mod P − 1

• SK = (m− ar) mod P − 1

• m = (Sk + ar) mod P − 1

• αm = αsk + ar mod P

• (αa)r ∗ (αk)S

• (B)r ∗ (r)SV 1

Why is this secure?

If Eve wants to pretend to be Alice. She needs to obtain a value of S that is valid for Alice’s
secret key ’a’ she needs an ’S’ where:
βr ∗ rS = αm mod P
rS = αm ∗ β−r mod P
Eve has to solve this for S—DLP is Hard

—Digital Signatures—

DSA = Digital Signature Algorithm
Introduced by NIST in 1991

Pick q = a prime with around 160 bits
pick p = a (q+1) fr some a around 1024 bits
pick g = primitive rood mod P
pick α = g(p−1)/q mod P
pick αa = gp−1 = 1 mod P

—Steps for DSA—

1. Pick K randomly in (1,2,3...q-1)

2. Compute r = αk(mod P)(mod a)

3. Compute S = k−1(m+ ar) mod q

3

4. Digital Signature is (r,S)

—Verification—

1. Compute: U1 = S−1m mod q

2. Compute: U2 = S−1r mod q

3. Compute: V = (αU1βU2 mod p) mod q

If V = r Accept; if otherwise, Reject

—Check That this works—

• m = (SK − ar) mod q

• s−1m = K − ars−1 mod q

• K = S−1m+ ars−1 mod q

• = u1 + au2 mod q

—Now—

• rαk = αU1+au2 mod P

• αu1 ∗ (αa)u2 mod P

• αu1βu2 mod P

Last step will only work if the Signature is Valid

—-Key Improvement is...—-

(r, s) 6 q - Much smaller than P
Key arithmetic occurs mod P large and so can be made secure using a large value of ’P’.
Since we want digital signatures to work for arbitrarily large messages ’m,’ we can just use large
messages; but it is better to use a hash function to make them short first instead.
In general we use a hash function to generate a digest h(m), which is used to produce a signature
instead,

4

