Class Notes for November 22

Name of Author

December 8, 2016

Recall basic goals of cryptography:

e Confidentiality (Eve can’t get information about a message)

e Data Integrity (Eve can’t modify a message)

e Authentication (Bob knows that Alice sent a message)

e Non-Repudiation (Bob can prove that Alice sent the message)

Hash Functions

A hash function h(z) — m is a function that takes a long string x and shortens
it to a much shorter string m. The output has a fixed length but size of x may be
variable. We call the output of a hash function the digest or hash or hashcode
of x. One thing we can use a hash function for is data integrity.

Rather than just sending a message m, Alice sends (m, h(m)).

Bob checks if the m he recieves is equal to the hash Alice sent.

If it’s not equal, then the message was wrong.

Example: Let h(z) be the sum of the binary digits of x reduced mod 2 (parity
bit function). Test to see if a bit was flipped in transmission. Works for acci-
dental mistakes, not for malicious ones.

Ideal Properties of a Hash Function:

1. Fast to compute
2. Produce a fixed length (short) output

Say a hash function has a collision if h(x1) = h(xs) for 1 # xs.

Ideal Collision Properties of a Hash Function

1. Preimage resistant: given y it is hard to find x such that y = h(x) (hard
to undo the hash function)

2. Weak collision resistant: given a message x; it should be hard to find
another message xo where h(z1) = h(xs)

3. Strong collision resistant: It is hard to find any two inputs x; and xo
where h(z1) = h(x2).

These properties are increasingly stronger 3) = 2) = 1). For use in encryption,
we’d like a hash function with property 3.

Simple example: suppose we want outputs in the range 0 to n-1. Then we
would choose h(z) =z (mod n).

This is fast, but not preimage resistant. To find x with h(x) = z, let © = y or
y+nory+In.

Better example: Use discrete logarithms

Discrete Log Hash

Choose a prime g such that 2g + 1 = p is also prime. Pick different primitive
roots (mod p). Call them «, 3 for some m € [0,¢* — 1].

m = x1 + qro (writing m in base q)

Define h(m) = a*° 5%t (mod p)

Input can’t be arbitrarily large m < ¢?> — 1 But h(m) <p<2¢+1<¢®>—150
h(m) is smaller than m. Output is ”about” square root size of input.

This hash seems to have strong collision resistance. Prove this by showing that
if we can find a collision, we can solve the discrete log problem. So since «, 8
are both primitive roots (mod p), there exists a such that a® = (mod p).

Proposition: If we can find m; and mg with h(m1) = h(ms) then we can find a
(solve the discrete log problem loga = L, (53))

Proof: write m; = x¢p + z1qg and my = yg + y19

then h(mp) = a® % (mod p) and h(mg) = ¥ Y (mod p)

then a®0 g%t = a¥% Y1 (mod p)

aﬂco—yoﬂxl—m =1 (mod p)

since 8 = a®

oTo—Yo (aa)ﬂﬁl*w = (modp)

arovotalzi=y1) = 1 (mod p)

Since « is a primitive root this means the exponent is a multiple of p — 1
so (o —yo) +a(x; —y1) =0 (mod p)

—a(zy —y1) =x9—yo (mod p—1)

Solve this equation (mod p — 1) to find a. There can’t be more than two
possibilities for a (try them both).

So we solved DLP for a = L,(8). Since we think this is hard, finding colli-
sions must be hard.

Discrete Log hash is too slow to be used in practice. In practice, the hashes
used are MD5, SHA-0, SHA-a, and RIPEMD-60.

Merkle-Damgard Construction

Used by most modern hashes. Suppose we have a function f takes in strings of
length n and produces strings of length s.

l=n-—s

To hash m. pad it with enough zeroes so its length is a multiple of £.

Break the input into t string of length ¢

Initialize H to some fixed string of length S.

For i in [1...t]{
H = £(H || m;)
output H

Hard part is choosing a good f.
This appears to be fairly secure (strongly collision resistant)

MD?5 has outputs with 128 bits and SHA-1 has outputs with 160 bits.

In 2005 mathematicians found collisions for MD5 and SHA-0 (similar to SHA-
1). So NSA and NIST are encouraging people to use SHA-2 which has 256, 384,
or 512 bits instead. How many inputs do we need to try before we expect to
find a collision?

Birthday Paradox

How many people need to be in a room before the probability that 2 of them
have the same birthday is greater than 50%?
Answer is 23.

Probability that 2 people share a birthday is z5=.
probability that none share a birthday is (1 —)(1 363)

In general for n people, this probability is (1 — E)(l 365)--(1 — 355)

Ifn =23, (1 - 5z)(1 — 55)...(1 — %) = 0.493

In general N things randomly choose r of them Probability of there being a

‘H

If we have 3 people, the

"co

match is 1—(1—+)(1—2)...(1— Z32) ~ 1 —eZ~ (this is a good approximation
for large N)

