
Class Notes for November 22

Name of Author

December 8, 2016

Recall basic goals of cryptography:

• Confidentiality (Eve can’t get information about a message)

• Data Integrity (Eve can’t modify a message)

• Authentication (Bob knows that Alice sent a message)

• Non-Repudiation (Bob can prove that Alice sent the message)

Hash Functions
A hash function h(x) → m is a function that takes a long string x and shortens
it to a much shorter string m. The output has a fixed length but size of x may be
variable. We call the output of a hash function the digest or hash or hashcode
of x. One thing we can use a hash function for is data integrity.
Rather than just sending a message m, Alice sends (m,h(m)).
Bob checks if the m he recieves is equal to the hash Alice sent.
If it’s not equal, then the message was wrong.
Example: Let h(x) be the sum of the binary digits of x reduced mod 2 (parity
bit function). Test to see if a bit was flipped in transmission. Works for acci-
dental mistakes, not for malicious ones.

Ideal Properties of a Hash Function:

1. Fast to compute

2. Produce a fixed length (short) output

Say a hash function has a collision if h(x1) = h(x2) for x1 6= x2.

Ideal Collision Properties of a Hash Function

1. Preimage resistant: given y it is hard to find x such that y = h(x) (hard
to undo the hash function)

2. Weak collision resistant: given a message x1 it should be hard to find
another message x2 where h(x1) = h(x2)

1



3. Strong collision resistant: It is hard to find any two inputs x1 and x2

where h(x1) = h(x2).

These properties are increasingly stronger 3) ⇒ 2) ⇒ 1). For use in encryption,
we’d like a hash function with property 3.

Simple example: suppose we want outputs in the range 0 to n-1. Then we
would choose h(x) ≡ x (mod n).
This is fast, but not preimage resistant. To find x with h(x) = x, let x = y or
y + n or y + ℓn.
Better example: Use discrete logarithms

Discrete Log Hash
Choose a prime q such that 2q + 1 = p is also prime. Pick different primitive
roots (mod p). Call them α, β for some m ∈ [0, q2 − 1].
m = x1 + qx0 (writing m in base q)
Define h(m) = αx0βx1 (mod p)
Input can’t be arbitrarily large m ≤ q2 − 1 But h(m) < p < 2q + 1 < q2 − 1 s0
h(m) is smaller than m. Output is ”about” square root size of input.
This hash seems to have strong collision resistance. Prove this by showing that
if we can find a collision, we can solve the discrete log problem. So since α, β

are both primitive roots (mod p), there exists a such that αa ≡ β (mod p).

Proposition: If we can find m1 and m2 with h(m1) = h(m2) then we can find a

(solve the discrete log problem loga = Lα(β))

Proof: write m1 = x0 + x1q and m1 = y0 + y1q

then h(m1) = αx0βx1 (mod p) and h(m2) = αy0βy1 (mod p)
if h(m1) = h(m2)
then αx0βx1 ≡ αy0βy1 (mod p)
αx0−y0βx1−y1 ≡ 1 (mod p)
since β = αa

αx0−y0(αa)x1−y1 ≡ (modp)
αx0−y0+a(x1−y1) ≡ 1 (mod p)
Since α is a primitive root this means the exponent is a multiple of p− 1
so (x0 − y0) + a(x1 − y1) ≡ 0 (mod p)
−a(x1 − y1) ≡ x0 − y0 (mod p− 1)
Solve this equation (mod p − 1) to find a. There can’t be more than two
possibilities for a (try them both).

So we solved DLP for a = Lα(β). Since we think this is hard, finding colli-
sions must be hard.

Discrete Log hash is too slow to be used in practice. In practice, the hashes
used are MD5, SHA-0, SHA-a, and RIPEMD-60.

2



Merkle-Damg̊ard Construction
Used by most modern hashes. Suppose we have a function f takes in strings of
length n and produces strings of length s.
ℓ = n− s

To hash m. pad it with enough zeroes so its length is a multiple of ℓ.
Break the input into t string of length ℓ

Initialize H to some fixed string of length S.
For i in [1...t]{
H = f(H ‖ mi)
}
output H
Hard part is choosing a good f.
This appears to be fairly secure (strongly collision resistant)

MD5 has outputs with 128 bits and SHA-1 has outputs with 160 bits.

In 2005 mathematicians found collisions for MD5 and SHA-0 (similar to SHA-
1). So NSA and NIST are encouraging people to use SHA-2 which has 256, 384,
or 512 bits instead. How many inputs do we need to try before we expect to
find a collision?

Birthday Paradox
How many people need to be in a room before the probability that 2 of them
have the same birthday is greater than 50%?
Answer is 23.
Probability that 2 people share a birthday is 1

365 . If we have 3 people, the
probability that none share a birthday is (1− 1

365 )(1−
2

365 )
In general for n people, this probability is (1− 1

365 )(1−
2

365 )...(1−
n

365 )
If n = 23, (1− 1

365 )(1−
2

365 )...(1−
22
365 ) = 0.493

In general N things randomly choose r of them. Probability of there being a

match is 1−(1− 1
N
)(1− 2

N
)...(1− r−1

N
) ≈ 1−e

−r
2

2N (this is a good approximation
for large N)

3


