Class Notes for November 22

Name of Author

December 8, 2016

Recall basic goals of cryptography:

- Confidentiality (Eve can't get information about a message)
- Data Integrity (Eve can't modify a message)
- Authentication (Bob knows that Alice sent a message)
- Non-Repudiation (Bob can prove that Alice sent the message)

Hash Functions

A hash function $h(x) \rightarrow m$ is a function that takes a long string x and shortens it to a much shorter string m . The output has a fixed length but size of x may be variable. We call the output of a hash function the digest or hash or hashcode of x . One thing we can use a hash function for is data integrity.
Rather than just sending a message m, Alice sends $(m, h(m))$.
Bob checks if the m he recieves is equal to the hash Alice sent.
If it's not equal, then the message was wrong.
Example: Let $h(x)$ be the sum of the binary digits of x reduced mod 2 (parity bit function). Test to see if a bit was flipped in transmission. Works for accidental mistakes, not for malicious ones.

Ideal Properties of a Hash Function:

1. Fast to compute
2. Produce a fixed length (short) output

Say a hash function has a collision if $h\left(x_{1}\right)=h\left(x_{2}\right)$ for $x_{1} \neq x_{2}$.
Ideal Collision Properties of a Hash Function

1. Preimage resistant: given y it is hard to find x such that $y=h(x)$ (hard to undo the hash function)
2. Weak collision resistant: given a message x_{1} it should be hard to find another message x_{2} where $h\left(x_{1}\right)=h\left(x_{2}\right)$
3. Strong collision resistant: It is hard to find any two inputs x_{1} and x_{2} where $h\left(x_{1}\right)=h\left(x_{2}\right)$.

These properties are increasingly stronger 3$) \Rightarrow 2) \Rightarrow 1$). For use in encryption, we'd like a hash function with property 3 .

Simple example: suppose we want outputs in the range 0 to $n-1$. Then we would choose $h(x) \equiv x \quad(\bmod n)$.
This is fast, but not preimage resistant. To find x with $h(x)=x$, let $x=y$ or $y+n$ or $y+\ell n$.
Better example: Use discrete logarithms

Discrete Log Hash

Choose a prime q such that $2 q+1=p$ is also prime. Pick different primitive roots $(\bmod p)$. Call them α, β for some $m \in\left[0, q^{2}-1\right]$.
$m=x_{1}+q x_{0}$ (writing m in base q)
Define $h(m)=\alpha^{x_{0}} \beta^{x_{1}} \quad(\bmod p)$
Input can't be arbitrarily large $m \leq q^{2}-1$ But $h(m)<p<2 q+1<q^{2}-1$ s0 $h(m)$ is smaller than m. Output is "about" square root size of input.
This hash seems to have strong collision resistance. Prove this by showing that if we can find a collision, we can solve the discrete \log problem. So since α, β are both primitive roots $(\bmod p)$, there exists a such that $\alpha^{a} \equiv \beta \quad(\bmod p)$.

Proposition: If we can find m_{1} and m_{2} with $h\left(m_{1}\right)=h\left(m_{2}\right)$ then we can find a (solve the discrete log problem loga $=L_{\alpha}(\beta)$)

```
Proof: write \(m_{1}=x_{0}+x_{1} q\) and \(m_{1}=y_{0}+y_{1} q\)
then \(h\left(m_{1}\right)=\alpha^{x_{0}} \beta^{x_{1}} \quad(\bmod p)\) and \(h\left(m_{2}\right)=\alpha^{y_{0}} \beta^{y_{1}} \quad(\bmod p)\)
if \(h\left(m_{1}\right)=h\left(m_{2}\right)\)
then \(\alpha^{x_{0}} \beta^{x_{1}} \equiv \alpha^{y_{0}} \beta^{y_{1}} \quad(\bmod p)\)
\(\alpha^{x_{0}-y_{0}} \beta^{x_{1}-y_{1}} \equiv 1 \quad(\bmod p)\)
since \(\beta=\alpha^{a}\)
\(\alpha^{x_{0}-y_{0}}\left(\alpha^{a}\right)^{x_{1}-y_{1}} \equiv(\bmod p)\)
\(\alpha^{x_{0}-y_{0}+a\left(x_{1}-y_{1}\right)} \equiv 1 \quad(\bmod p)\)
```

Since α is a primitive root this means the exponent is a multiple of $p-1$
so $\left(x_{0}-y_{0}\right)+a\left(x_{1}-y_{1}\right) \equiv 0 \quad(\bmod p)$
$-a\left(x_{1}-y_{1}\right) \equiv x_{0}-y_{0} \quad(\bmod p-1)$
Solve this equation $(\bmod p-1)$ to find a. There can't be more than two possibilities for a (try them both).

So we solved DLP for $a=L_{\alpha}(\beta)$. Since we think this is hard, finding collisions must be hard.

Discrete Log hash is too slow to be used in practice. In practice, the hashes used are MD5, SHA-0, SHA-a, and RIPEMD-60.

Merkle-Damgård Construction
Used by most modern hashes. Suppose we have a function f takes in strings of length n and produces strings of length s .
$\ell=n-s$
To hash m. pad it with enough zeroes so its length is a multiple of ℓ.
Break the input into t string of length ℓ
Initialize H to some fixed string of length S .
For i in $[1 \ldots \mathrm{t}]\{$
$\mathrm{H}=\mathrm{f}\left(\mathrm{H} \| m_{i}\right)$
\}
output H
Hard part is choosing a good f .
This appears to be fairly secure (strongly collision resistant)
MD5 has outputs with 128 bits and SHA-1 has outputs with 160 bits.
In 2005 mathematicians found collisions for MD5 and SHA-0 (similar to SHA1). So NSA and NIST are encouraging people to use SHA-2 which has 256, 384, or 512 bits instead. How many inputs do we need to try before we expect to find a collision?

Birthday Paradox
How many people need to be in a room before the probability that 2 of them have the same birthday is greater than 50% ?
Answer is 23 .
Probability that 2 people share a birthday is $\frac{1}{365}$. If we have 3 people, the probability that none share a birthday is $\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right)$
In general for n people, this probability is $\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{n}{365}\right)$
If $\mathrm{n}=23,\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{22}{365}\right)=0.493$
In general N things randomly choose r of them. Probability of there being a match is $1-\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \ldots\left(1-\frac{r-1}{N}\right) \approx 1-e^{\frac{-r^{2}}{2 N}}$ (this is a good approximation for large N)

