
Class Notes, November 10th

Dalton Watts

November 14, 2016

Factoring; We know n is composite. We want to find some d ∗ e = n where
d, e 6= 1, n

Trial division: Try to divide n by 2, 3, 4,, Sqrt(n) and wait ’til you find
a factor.

The worst case is that this would take Sqrt(n) steps, which is way too slow.
Basic principle: If x2 ≡ y2 (mod n)
and x 6= ±y (mod n)
then n is a composite and d = gcd(x − y, n) is a factor of n which is not 1,

nor n.
Ex: n = 77
Compute 92 ≡ 81 (mod 77)
≡ 4 (mod 77)
≡ 22 (mod 77)
92 ≡ 22 (mod 77)
92 6= ±2 (mod 77)
So, gcd(9− 2, 77) is a factor of 77.

Factoring: We know n is composite
Method 1: Choose random integers x in [2,n− 1] compute x2 (mod n)
If this number is a square when viewed as an integer get a way to factor n.
How fast is it going to be, though?
Choosing x randomly, x2 is “essentially” a random residue (mod n)
How many squares are there less than n? Take the floor of the square root

of n; that is the answer.

Probability a random residue is a square is b
√
nc
n ≈ 1√

n

We expect to have to do this
√
n times, which is the same as trial division.

Personally, I expect that making a specialized computer with all the primes
in a list would be the most effective way to crack RSA.

To make this faster, we use Dickson’s factoring method.
Factor n.
Pick a ”Small Prime Bound” B ≈ e

√
log(n)

1

Create a matrix where the columns of this matrix correspond to each of the
primes less than B

Step i:
1: Pick xi randomly in [

√
n, n− 1]

2: Compute Si ≡ x2i (mod n)
3: Use trial division to factor Si into primes ≤ B
4: If we can put into matrix a row with entries that are prime factors of Si
Repeat until the matrix has more rows than columns. Using linear algebra,

find a linear combination of rows that produces a row with all even entries. Use
rows i1, i2, ..., ik to do this.

Let x = xi1 , xi2 , ..., xik
y =

√
Si1Si2 , ...Sik

x2 ≡ y2 (mod n)
Usually x 6≡ ±y (mod n)
Factor n.

Example (See Sage Worksheet)
n = 629
B = 12
He formed it in a table, but as I don’t know how in .tex format, I’ll translate

its results into something I can write down. The left side is the left column, the
right side are the values along the table of primes labeled 2, 3, 5, 7, and 11.

73 = 03001
80 = 10101
87 = 01010
94 = 11100
62 = 101100
133 = 00011

He used Linear Algebra to narrow the columns down to 73, 80, and 94.

73 = 03001
80 = 10101
94 = 11100
Sum = 24202

x = 73 ∗ 80 ∗ 94
y =
√

22 + 34 + 52 + 112 (Notice the pattern is PrimeSumofColumnV alues)
y = 2 ∗ 32 ∗ 5 ∗ 11
x2 ≡ y2 (mod 629)
629 = 17 ∗ 37
Trial division requires O(

√
n) steps.

Dickson’s method requires O(e
√
log(n)∗log(log(n))) steps.

That grows slower than na for any fixed a > 0.
Larger than (log(n))B for any B.

2

Since Dickson, basic ideas have improved.
Quadratic Sieve gives a better way to pick the xi’s and runs faster.
The current best algorithm is the Number Field Sieve, which uses ideas from

abstract algebra MATH 369 to speed things up further.

If one day someone totally breaks RSA and it’s no longer safe, then what
other options are there for Public Key Cryptography?

Factoring is a one-way-function. It’s easy to do one way (multiplication),
but hard to undo (factoring).

A one way function is any invertible function which can be computed quickly,
but inverting it is infeasible for large values.

There’s one problem that’s been a suggested replacement in such an oc-
curence called the “Discrete Logarithm Problem”.

Fix a prime number P.
Suppose β ≡ αx (mod p)(α, β, and x are integers)
If you know α and x easy to compute β with Modular Exponentiation
If you know α and β, finding x is hard
This is the discrete log with base α
Over real numbers this is easy if β = αx

Then we can solve for x = logα(β) = ln(β)
ln(α) which is an irrational number.

This makes no sense (mod p)
Naive way to solve this is to try values of x until we find one where β ≡ αx

Diffie-Hellman key-exchange
Alice and Bob want to communicate using AES need a key could use RSA,

but here’s another method:
1: Bob chooses a large prime p and a primitive root (mod p)
Recall A primitive root mod p is a residue α where α produces all of the

residues mod p for different values of i.
2: Alice chooses a secret x where 1 < x < p− 1
Bob chooses a secret y where 1 < x < p− 1
3: Alice sends A = αx (mod p) to Bob
Bob sends B = αy (mod p) to Alice
4: Alice computes Bx ≡ (αy)x = αxy (mod p)
Alice computes Ay ≡ (αx)y = αxy (mod p)
Alice and bob both know αxy

Eve knows p, α, αx, αy, but doesn’t know x or y.
In order to determine Alice and Bob’s secret numbers, Eve has to solve the

discrete logarithm problem.
Alice and Bob can now use the first 128 bits of αxy as their key for AES.
Alice can’t use this to send a message to Bob, but it will allow them to agree

on a key secretly.

Baby Example:

3

p = 17 Check that α = 3 is a primitive root.
Alices chooses x = 11
Bob chooses y = 15
A = 311 ≡ 7 (mod 17)
B = 315 ≡ 6 (mod 17)
Alice then computes B11 ≡ 611 ≡ 5 (mod 17)
Bob then computes A15 ≡ 715 ≡ 5 (mod 17)

4

