MATH 314 - Class Notes

10/4/2016

Scribe: Tyler Howard

Summary: Reviewed content for Midterm 1. Covered primitive roots, quadratic residues, and continued looking at arithmetic with finite fields.

Notes: Midterm 1 has been completed, therefore only new material will be covered in these notes.

What is a primitive root modulo p?

- Let g be a primitive root (mod p) where p is prime.
- Then g^1, g^2, g^3, g^{p-1} are all of the nonzero remainders mod p

Facts about primitive roots to note:

- If g is a primitive root mod p, then
 - 1. $g^n = 1 \mod p$ if and only if n is a multiple of p 1 ie $n = 0 \mod (p 1)$
 - 2. If $g^i \equiv g^j modp$ then $i \equiv j modp 1$

What is a quadratic residue (mod p)?

- a is a quadratic residue mod p, where p is prime, if $x^2 \equiv amodp$ has a solution
- Example:
 - Residues mod7 = 1, 2, 3, 4, 5, 6
 - Squared residues $mod7 = 1^2, 2^2, 3^2, 4^2, 5^2, 6^2 \equiv 4, 2, 2, 4, 1$
 - So: 1, 2, and 4 are quadratic residues (mod 7) and 3, 5, 6 are not.

Finite Fields

- A field with n elements is a finite field, we write \mathbb{F}_n to denote it
- Remember, if n is prime then \mathbb{F}_p is the integers mod p
- If it is not prime then \mathbb{F}_n is the integers mod n

Recall last time: Polynomials with coefficients in \mathbb{F}_2

- Add, subtract, multiply these polynomials
- So these polynomials form a ring, like the set Integers
- Division with remainder in $\mathbb{F}_2[\mathbf{x}]$ example: $x^2 + x + 1)\overline{x^3 + 0x^2 + x + 1}$ = x + 1 remainder: x

• Using this characteristic of fields, we can do modular arithmetic of polynomials in $\mathbb{F}_2[x]$ modulo another polynomial.

Big example of polynomial arithmetic within \mathbb{F}_2 .

- $x^3 + x + 1 \mod(x^2 + x + 1) \equiv x \mod(x^2 + x + 1)$
- Notice the similarities: Integers ⇔ Polynomials with coefficients in F₂ Integers modulo n ⇔ Polynomials modulo F[x] Integers modulo p (finite) ⇔ Polynomials modulo P[x](irreducible,prime)

Claim: $x^2 + x + 1$ is prime in \mathbb{F}_2

- Are they any polynomials smaller than $x^2 + x + 1$ in \mathbb{F}_2 ?
- Yes, we find x + 1, x, 1, and 0. Zero is negligible in this case.
- Lets check if prime: $x + 1)\overline{x^2 + x + 1} \equiv xremainder1$
- So we find that the polynomial $x^2 + x + 1$ behaves like a prime in \mathbb{F}_2

Since $x^2 + x + 1$ is irreducible, the polynomials modulo $x^2 + x + 1$ should be a field.

Addition table modulo $x^2 + x + 1$

+	0	1	x	x+1
0	0	1	х	x+1
1	1	0	x+1	Х
x	х	x+1	0	1
x+1	x+1	х	1	0

Multiplication table modulo $x^2 + x + 1$

+	0	1	х	x+1
0	0	0	0	0
1	0	1	х	x+1
x	0	х	x+1	1
x+1	0	x+1	1	х

Notice that $x * x = x^2$ which is not possible modulo $x^2 + x + 1$. Instead we must take the the inverse of $x \equiv x + 1$. Likewise x + 1 * x + 1 requires the inverse of $x + 1 \equiv x$

So, $x^3 + x + 1$ is irreducible too.

This is \mathbb{F}_4 , because there is 4 residues in the set.

Similarly, if you take polynomials modulo $x^3 + x + 1$, you get a field with 8 possible remainders.

Therefore, you get \mathbb{F}_8 .