MATH 314 - Class Notes
 10/4/2016

Scribe: Tyler Howard
Summary: Reviewed content for Midterm 1. Covered primitive roots, quadratic residues, and continued looking at arithmetic with finite fields.

Notes: Midterm 1 has been completed, therefore only new material will be covered in these notes.
What is a primitive root modulo p ?

- Let g be a primitive root $(\bmod p)$ where p is prime.
- Then $g^{1}, g^{2}, g^{3}, g^{p-1}$ are all of the nonzero remainders mod p

Facts about primitive roots to note:

- If g is a primitive root $\bmod p$, then

1. $g^{n}=1 \bmod p$ if and only if n is a multiple of $p-1$ ie $n=0 \bmod (p-1)$
2. If $g^{i} \equiv g^{j} \bmod p$ then $i \equiv j \bmod p-1$

What is a quadratic residue $(\bmod \mathrm{p})$?

- a is a quadratic residue mod p , where p is prime, if $x^{2} \equiv \operatorname{amod} p$ has a solution
- Example:
- Residues $\bmod 7=1,2,3,4,5,6$
- Squared residues $\bmod 7=1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2} \equiv 4,2,2,4,1$
- So: 1, 2, and 4 are quadratic residues $(\bmod 7)$ and $3,5,6$ are not.

Finite Fields

- A field with n elements is a finite field, we write \mathbb{F}_{n} to denote it
- Remember, if n is prime then \mathbb{F}_{p} is the integers $\bmod \mathrm{p}$
- If it is not prime then \mathbb{F}_{n} is the integers mod n

Recall last time: Polynomials with coefficients in \mathbb{F}_{2}

- Add, subtract, multiply these polynomials
- So these polynomials form a ring, like the set Integers
- Division with remainder in $\mathbb{F}_{2}[\mathrm{x}]$ example:
$x ^ { 2 } + x + 1 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + x + 1 }$
$=x+1$ remainder: x
- Using this characteristic of fields, we can do modular arithmetic of polynomials in $\mathbb{F}_{2}[\mathrm{x}]$ modulo another polynomial.

Big example of polynomial arithmetic within \mathbb{F}_{2}.

- $x^{3}+x+1 \bmod \left(x^{2}+x+1\right) \equiv \operatorname{xmod}\left(x^{2}+x+1\right)$
- Notice the similarities:

Integers \Leftrightarrow Polynomials with coefficients in \mathbb{F}_{2}
Integers modulo $\mathrm{n} \Leftrightarrow$ Polynomials modulo $\mathbb{F}[\mathrm{x}]$
Integers modulo p (finite) \Leftrightarrow Polynomials modulo $\mathrm{P}[\mathrm{x}]$ (irreducible,prime)

Claim: $x^{2}+x+1$ is prime in \mathbb{F}_{2}

- Are they any polynomials smaller than $x^{2}+x+1$ in \mathbb{F}_{2} ?
- Yes, we find $x+1, x, 1$, and 0 . Zero is negligible in this case.
- Lets check if prime: $x+1 \overline{x^{2}+x+1} \equiv$ xremainder 1
- So we find that the polynomial $x^{2}+x+1$ behaves like a prime in \mathbb{F}_{2}

Since $x^{2}+x+1$ is irreducible, the polynomials modulo $x^{2}+x+1$ should be a field.
Addition table modulo $x^{2}+x+1$

+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0

Multiplication table modulo $x^{2}+x+1$

+	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	x

Notice that $x * x=x^{2}$ which is not possible modulo $x^{2}+x+1$. Instead we must take the the inverse of $x \equiv x+1$. Likewise $x+1 * x+1$ requires the inverse of $x+1 \equiv x$

So, $x^{3}+x+1$ is irreducible too.
This is \mathbb{F}_{4}, because there is 4 residues in the set.
Similarly, if you take polynomials modulo $x^{3}+x+1$, you get a field with 8 possible remainders.
Therefore, you get \mathbb{F}_{8}.

