MATH 314 - Class Notes

10/27/2015
Scribe: Jacob Larochelle
Summary: Finished the steps for sAES.
Notes: Picking up where we left off in the last class, we finish the remaining steps of sAES begining with round one.

Round One:

- Substitute from sbox

1001110111011101 -becomes 0010111011101110

- Shift Rows
turn the above binary into a matrix and shift row N by N positions
$\left(\begin{array}{ll}0010 & 1110 \\ 1110 & 1110\end{array}\right)$
stays the same due to repeated numbers
- Mix Columns in the field 16
$\left(\begin{array}{cc}1 & x^{2} \\ x^{2} & 1\end{array}\right) *\left(\begin{array}{cc}x & x^{3}+x^{2}+x \\ x^{3}+x^{2}+x & x^{3}+x^{2}+x\end{array}\right)=\left(\begin{array}{cc}x^{5}+x^{4}+x^{3}+x & x^{5}+x^{4}+x^{2}+x \\ x^{2}+x & x^{5}+x^{4}+x^{2}+x\end{array}\right)$ and reduce $\bmod \mathrm{x}^{4}+x+1$
$=\left(\begin{array}{ll}1111 & 0110 \\ 0011 & 0011\end{array}\right)$
- Add round key

1111011000110011 xor $1101110100101000=0010101100011011$

Round Two:

- Substitute from sbox

0010101100011011 -becomes 1010001101000011

- Shift Rows
turn the above binary into a matrix and shift row N by N positions
$\left(\begin{array}{ll}1010 & 0100 \\ 0011 & 0011\end{array}\right)$
stays the same due to repeated numbers
- Add round key

1010001101000011 xor $1101110100101000=0010010011101100$
0010010011101100 is our final cipher text

Decryption:

We briefly addressed the decryption of AES and concluded that all the steps can be performed in reversed except mix column which is easily dealt with by the use of a decryption matrix that is the inverse of the encryption matrix.

AES Differences:

- 128 bit plaintext
- Versions with $128 / 192 / 256$ bit keys
- Write 4 x 4 matrices with 8 bits in each position
- Work over a field 256 elements
- Modulo $\mathrm{x}^{8}+x^{4}+x^{3}+x+1$
- Differential cryptanalysis is only effective against AES with 7 rounds, AES is extra safe using 10 rounds
- Fastest way to attack is brute force, 2^{256} possible keys

Symetric Encryption Methods:

- Fast
- Very secure, eve must figure out key
- Downside- both parties must communicate a key preemptively
- Solution- public key cryptography

Public key:

- 2 keys, public and secure
- knowing one key does not help in finding the second

