MATH 314 - Class Notes

10/25/2016

Scribe: Lougrant Fernandez

Summary: Today in class we covered the Advanced Encryption Standard (AES).

<u>Notes:</u> Include detailed notes from the lecture or class activities. Format your notes nicely using latex such as

- bullets
- 1. lists

or **other** formatting *commands*. Make sure to write $e^{qu}a + i \circ \mathbb{N}s$ in math mode.

Examples: If including plaintext or ciphertext or other data it is often helpful to write them using typewriter text.

AES is the current standard for encryption.

Simplified AES

• Key: 16 bits

• Block Size: 16 bits

• 2 rounds

Plain Text \rightarrow Add Round Key \rightarrow Round 1 \rightarrow Round 2

Round 1

Substitution \rightarrow Shift Rows \rightarrow Mix Columns \rightarrow Add Round Key

Round 2

Repeat round 1 but skip mix columns.

Unlike DES, AES is not a Feistel Cipher.

Benefit: Bits get diffused much faster.

S-Box: SAES

- Take in 4 bits
- Output 4 bits

Values come from a simple rule.

Take the input $b_0b_1b_2b_3s$ and write as polynomial $b_0x^3 + b_1x^2 + b_2x + b_3$

Treat this as an element of $F_{\ell}(2^4)$

In $\mathbb{F}_{16} = \mathbb{F}_{2^4}$

we work modulo the irreducible polynomial: $x^4 + x + 1$

Compute: $(b_0x^3 + b_1x^2 + b_2x + b_3)^{-1}$ = $C_0x^3 + C_1x^2 + C_2x + C_3$

$$\begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 output of S Boxes

Ex: Compute output of S-Box for 1001

Write as polynomial $x^{3} + 1$

Find Inverse (Euclidean Algorithm) \mathbf{X}

Compute

$$MC = \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} output from S - Box$$

S-Box for SAES

Key Expansion

Get roundkeys from master key K

Break K into two pieces(W_0, W_1)

$$W_2 = g(W_1) \oplus W_0$$

$$W_3 = W_2 \oplus W_1$$

$$W_4 = g(W_1) \oplus W_2$$

$$W_5 = W_4 \oplus W_3$$

Round Keys

$$\overline{\mathbf{K}_0 = W_0 W_1}$$

$$K_1 = W_2 W_3$$

$$K_2 = W_4 W_5$$

 $\frac{g}{S}$ plit W into N_0 and N_1

Swap N_0 and N_1

Run through S-Boxes

XOR new N_1 with the polynomial $x^{i+2} \mod x^4 + x + 1$

Append new N_0 to the output of the previous step to get final result

In g, i is the round that the word is being computed for

Arrange our bits into a 2x2 matrix 4 bits each

$$\begin{pmatrix} In_0 & In_1 \\ In_2 & In_3 \end{pmatrix}$$

Substitution Step

Feed $In_0In_1In_2In_3$ into the s-box and replace with the outputs

Get out:
$$\begin{pmatrix} S_{00} & S_{01} \\ S_{10} & S_{11} \end{pmatrix}$$

Shift Rows

Take the elements of matrix in row i and rotate them i position left.

$$\begin{pmatrix} S_{00} & S_{01} \\ S_{10} & S_{11} \end{pmatrix}$$

In AES shifts to:
$$\begin{pmatrix} S_{00} & S_{01} \\ S_{11} & S_{10} \end{pmatrix}$$

Mix Column

Treat entries of m as polynomials in \mathbb{F}_{16}

Multiply times the Matrix E.

$$E = \begin{pmatrix} 1 & X^2 \\ X^2 & 1 \end{pmatrix}$$

output of Mix Column is matrix ME. Treat entries as vector again.

3

Example: Use SAES to encrypt

 $P = 1101 \ 0111 \ 0010 \ 1000$

 $K = 0100 \ 1010 \ 1111 \ 0101$

 $W_0 = 01001010$

 $W_1 = 11110101$

$$W_2 = g(W_1) \oplus W_0$$

 $g(W_1) = \text{swap } 1111 \ 0101$

get: 0101 1111 S-Box: 0001 0111 XOR 0001 with x^31000

get: 10010111

 $W_2 = 1001\ 0111\ \oplus 01001010 = 11011101$

 $W_3 = W_2 \oplus W_1$ = 11011101 \oplus 11110101 = 00101000

 $W_4 = g(W_3) \oplus W_2$ = 01011010 \oplus 11011101 = 10000111

 $W_5 = W_4 + W_3$ = 10000111 \oplus 00101000 = 10101111

We now have all of our round Keys!

 $W_0 = 01001010$

 $W_1 = 11110101$

 $W_2 = 11011101$

 $W_3 = 00101000$

 $W_4 = 10000111$

 $W_5 = 10101111$

P + K =output of initial add round key. Input this to round 1. $1101011100101000 \oplus 010010101110101 = 1001110111011101$