MATH 314 - Class Notes

10/25/2016
Scribe: Lougrant Fernandez
Summary: Today in class we covered the Advanced Encryption Standard(AES).

Notes: Include detailed notes from the lecture or class activities. Format your notes nicely using latex such as

- bullets

1. lists
or other formatting commands. Make sure to write $e^{q u} a+i \circ \mathbb{N} s$ in math mode.
Examples: If including plaintext or ciphertext or other data it is often helpful to write them using typewriter text.

AES is the current standard for encryption.
Simplified AES

- Key: 16 bits
- Block Size: 16 bits
- 2 rounds

Plain Text \rightarrow Add Round Key \rightarrow Round $1 \rightarrow$ Round 2
Round 1
Substitution \rightarrow Shift Rows \rightarrow Mix Columns \rightarrow Add Round Key
Round 2
Repeat round 1 but skip mix columns.
Unlike DES, AES is not a Feistel Cipher.
Benefit: Bits get diffused much faster.

S-Box: SAES

- Take in 4 bits
- Output 4 bits

Values come from a simple rule.
Take the input $b_{0} b_{1} b_{2} b_{3} s$
and write as polynomial
$\mathrm{b}_{0} x^{3}+b_{1} x^{2}+b_{2} x+b_{3}$
Treat this as an element of $\mathrm{F}\left(2^{4}\right)$
In $\mathbb{F}_{16}=\mathbb{F}_{2^{4}}$
we work modulo the irreducible polynomial: $\mathrm{x}^{4}+x+1$
Compute: $\left(\mathrm{b}_{0} x^{3}+b_{1} x^{2}+b_{2} x+b_{3}\right)^{-1}$
$=C_{0} x^{3}+C_{1} x^{2}+C_{2} x+C_{3}$
$\left(\begin{array}{l}S_{0} \\ S_{1} \\ S_{2} \\ S_{3}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{l}C_{0} \\ C_{1} \\ C_{2} \\ C_{3}\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$
output of S Boxes

Ex: Compute output of S-Box for 1001

Write as polynomial
$x^{3}+1$
Find Inverse (Euclidean Algorithm)
x
Compute
$M C=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ outputfromS - Box

S-Box for SAES

$x x$	00	01	10	11
00	1001	0100	1010	1011
01	1101	0001	1000	0101
10	0110	0010	0000	0011
11	1100	1110	1111	0111

Key Expansion
Get roundkeys from master key K
Break K into two pieces $\left(\mathrm{W}_{0}, W_{1}\right)$
$\mathrm{W}_{2}=g\left(W_{1}\right) \oplus W_{0}$
$W_{3}=W_{2} \oplus W_{1}$
$W_{4}=g\left(W_{1}\right) \oplus W_{2}$
$W_{5}=W_{4} \oplus W_{3}$
Round Keys
$\overline{\mathrm{K}_{0}}=W_{0} W_{1}$
$K_{1}=W_{2} W_{3}$
$K_{2}=W_{4} W_{5}$
g
$\stackrel{\circ}{\text { Split }} \mathrm{W}$ into N_{0} and N_{1}
Swap N_{0} and N_{1}
Run through S-Boxes
XOR new N_{1} with the polynomial $x^{i+2} \bmod x^{4}+x+1$
Append new N_{0} to the output of the previous step to get final result
In g, i is the round that the word is being computed for
Arrange our bits into a 2 x 2 matrix 4 bits each
$\left(\begin{array}{ll}I n_{0} & I n_{1} \\ I n_{2} & I n_{3}\end{array}\right)$

Substitution Step
Feed $I n_{0} I n_{1} I n_{2} I n_{3}$ into the s-box and replace with the outputs
Get out: $\left(\begin{array}{cc}S_{00} & S_{01} \\ S_{10} & S_{11}\end{array}\right)$
Shift Rows
Take the elements of matrix in row i and rotate them i position left. $\left(\begin{array}{cc}S_{00} & S_{01} \\ S_{10} & S_{11}\end{array}\right)$
In AES shifts to: $\left(\begin{array}{ll}S_{00} & S_{01} \\ S_{11} & S_{10}\end{array}\right)$
Mix Column
Treat entries of m as polynomials in \mathbb{F}_{16}
Multiply times the Matrix E.
$E=\left(\begin{array}{cc}1 & X^{2} \\ X^{2} & 1\end{array}\right)$
output of Mix Column is matrix ME. Treat entries as vector again.
Example: Use SAES to encrypt
$\overline{\mathrm{P}}=1101011100101000$
$K=0100101011110101$
$W_{0}=01001010$
$W_{1}=11110101$
$W_{2}=g\left(W_{1}\right) \oplus W_{0}$
$g\left(W_{1}\right)=$ swap 11110101
get: 01011111
S-Box: 00010111
XOR 0001 with $\mathrm{x}^{3} 1000$
get : 10010111
$\mathrm{W}_{2}=10010111 \oplus 01001010=11011101$
$W_{3}=W_{2} \oplus W_{1}$
$=11011101 \oplus 11110101=00101000$
$W_{4}=g\left(W_{3}\right) \oplus W_{2}$
$=01011010 \oplus 11011101=10000111$
$W_{5}=W_{4}+W_{3}$
$=10000111 \oplus 00101000=10101111$
We now have all of our round Keys!
$W_{0}=01001010$
$W_{1}=11110101$
$W_{2}=11011101$
$W_{3}=00101000$
$W_{4}=10000111$
$W_{5}=10101111$
$\mathrm{P}+\mathrm{K}=$ output of initial add round key. Input this to round 1.
$1101011100101000 \oplus 010010101110101=1001110111011101$

