Class Notes, 10-20-2016

Dalton Watts

November 22, 2016

DES uses a 56 bit key. $2^{5} 6$ possible keys $7.2 * 10^{16}$ Brute force attack against DES try all possible keys 1990s first specialized computers could brute force DES in a few days. Now a few hours. Double encryption with two different keys k , k^{6} (he's writing k1, k2, but that conflicts with the SDES notes) Encrypt plaintext using $E_{k^{*}}\left(E_{k}(P)\right)$ Decrypt ciphertext using $D_{k}\left(D_{k^{*}}(C)\right)$ Naively it seems like this is much more secure. Brute Force attack: 2^{56} possibilities for k and 2^{56} possiblities for k^{6}. Combined, it's 2^{112} possibilities. $5.2 * 10^{33}$

Brute force doesn't work well against Double DES. It's still ridiculously long to solve, even today. Sadly, there's a problem with a "Meet in the Middle" attack. It's a Known Plaintext attack Know that the plaintext P encrypts to C and $\mathrm{P}^{‘}$ encrypts to $\mathrm{C}^{\text {‘ }}$
take P and compute $E_{k}(P)$ for all 2^{56} possible keys. Put into table 1 take C and compute $D_{k^{*}}(C)$ for all 2^{56} possible key's. Put into table 2
$\mathrm{C}=\mathrm{E}^{‘}(\mathrm{E}(\mathrm{P})) \mathrm{D}^{`}(\mathrm{C})=\mathrm{E}(\mathrm{P})$
So, link the two tables and find where they're equal! Any pair of entries gives possible values for k and k^{6}

Suppose Encryption function produces an essentially random string of bits If we fix k and $\mathrm{k}^{‘}$, What is the probability that $\mathrm{D}^{`}(\mathrm{C})=\mathrm{E}(\mathrm{P})$? Works out to be $\frac{1}{2}^{64}$ probability that these are the same.
2^{112} possible pairs of k and k^{6}. So, we expect to narrow it down to 2^{48} pairs
Repeat for $\left(\mathrm{P}^{‘}, \mathrm{C}^{‘}\right) \mathrm{D}^{‘}\left(\mathrm{C}^{‘}\right)=\mathrm{E}\left(\mathrm{P}^{‘}\right)$
Then the probability that it'll match up in all four tables is $\left(\frac{1}{2}^{64}\right)^{2}$
$\frac{1}{2}^{128} * 2^{112}=2^{-16}$
It's likely that you will have just one pair of k and $\mathrm{k}^{\text {' remaining, which }}$ should be the set of keys used in the encryption. Using this strategy on DDES is equivalent to doing 4 brute force attacks on regular DES encryptions (1 for each table) Effective security is equivalent to $4 * 2^{56}=2^{58}$ bit key.

What about Triple DES? Pick 3 keys, k k' k" (compared to the board, he's still using numbers, so $k=k 1$, $\mathrm{k}^{\star}=\mathrm{k} 2, \mathrm{k}^{"}=\mathrm{k} 3$) Encryption is $\mathrm{E}^{*}\left(\mathrm{E}^{‘}(\mathrm{E}(\mathrm{P}))\right.$) Decryption is $\mathrm{D}\left(\mathrm{D}^{‘}\left(\mathrm{D}^{"}(\mathrm{C})\right)\right)$

If we try to do a meet in the middle attack against TDES, we'd have to create tables for: $\mathrm{E}^{‘}(\mathrm{E}(\mathrm{P}))$ however, this is $2^{1} 12$ entries, whichisoutsidethecapabilitiesofmoderncomputers. $D^{\text {" }}(C) 2^{5} 6$

So, TDES is secure for now. (I would personally expect that QuadDES or QuintDES would be even safer for little extra cost.) Effective Key Length of

TDES is like a 2^{112}-bit key. In practice, they use a trick so that only 2 keys are stored in TDES today, k and k^{\star}. The encryption function is $\mathrm{E}\left(\mathrm{D}^{〔}(\mathrm{E}(\mathrm{P}))\right.$ Decryption function is $\mathrm{D}\left(\mathrm{E}^{\mathfrak{c}}(\mathrm{D}(\mathrm{C}))\right)$

Another method used today is DES-X Choose 2-64 bit keys k and k^{6} and 1-56 bit key k"

Encryption function is $\mathrm{k} \oplus \mathrm{E}^{*}\left(\mathrm{P}\right.$ XOR $\left.\mathrm{k}^{‘}\right)$
Down side to DES is that messages must be 64 -bits long. How do we send longer messages? Split the bits into different parts, and if one segment is not a full 64-bits, pad it with a bunch of 0's

Modes of Operation: Electronic Codebook (ECB) Break our message into blocks of length 64 . Encrypt each block separately using the same keys.

