MATH 314 - Class Notes

10/13/2015

Scribe: Kirill Vorobyev

Summary: Covered mini-mission 6, involving simple DES, with classmates comparing answers/strategies. Went over SageMath SDES code demo and discussed, in depth, how the functions operate. Started discussion on differential cryptanalysis.

Notes:

SageMath Code Demo Explanation:

- Start with list of lists containing S_1 and S_2
- Bin(S) converts numbers written with 1's and 0's into equivalent binary representation
- Expander(L) expands a string from 6 to 8 bits for SDES
- XOR(L,M) performs binary xor addition on two string L,M provided they are the same length
- roundkey(K,i) returns 8 bit key for round *i* from master 9 bit key
- bind2int(L) converts binary list to integer
- split(M) splits list into two equal halves
- SDES(R, K_i) performs function f
- SDESround (M, K_r) performs 1 round of SDES using roundkey K_r
- SDES(M,K,r) performs SDES on ${\bf M}$ with the key ${\bf K}$ using ${\bf r}$ rounds

Differential Cryptanalysis

- One method to attack Feistel System Ciphers
- SDES is a Feistel System Cipher
- Recall what a Feistel System is

How differential cryptanalysis works on 3 rounds of SDES:

- Choose Plaintext
- Split into L_0, R_0
- Encrypt 3 times/rounds using SDES
- Start with known inputs L_0 and R_0

•
$$L_0$$
 R_0

1.
$$L_1 = R_0$$
 $R_1 = L_0 \oplus f(R_0, K_1)$

- 2. $L_2 = L_0 \oplus f(R_0, K_1)$ $R_2 = ...$ 3. $L_3 = R_2$ $R_3 = L_2 \oplus f(R_2, K_3)$
- End with known outputs L_3 and R_3
- $R_3 = L_0 \oplus f(R_0, K_1) \oplus f(R_2, K_3)$

We want to find \mathbf{K}

Now choose a new plaintext L_0^* , R_0^* where $R_0 = R_0^*$ but $L_0 \neq L_0^*$ Feed through SDES as well and get out:

• $R_3^* = L_0^* \oplus f(R_0^*, K_1) \oplus f(R_2^*, K_3)$

 $R_3 = L_0 \oplus f(R_0, K_1) \oplus f(R_2, K_3) \leftarrow$ move down for reference

 $R_3 \oplus R_3^* = L_0^* \oplus L_0 \oplus f(R_2^*, K_3) \oplus f(R_2, K_3)$

 $(R_3 \oplus R_3^*) \oplus (L_0^* \oplus L_0) = f(L_3^*, K_3) \oplus f(L_3, K_3)$ Note: $R_2^* = L_3^* and R_2 = L_3$ At this point we know $L_0, L_0^*, R_3, R_3^*, L_3, L_3^*$ and f. The only thing we do not know is K_3

 $f(L_3, K_3) : E(L_3) \oplus K_3$ This is input 1. We must take the first 4 bits of the above and run them through S-box 1 to get our **output** $f(L_3^*, K_3) : E(L_3^*) \oplus K_3$ This is input 1^{*}. We must take the first 4 bits of the above and run them through S-box 1 to get our **output**^{*}

Note: Solving for input 1 is the same as solving for the first 4 bits of K_3 We don't know Input1 or Input1^{*} but if we figure out what they are we can get the first 4 bits of K_3 Note that Input1 \oplus Input1^{*} is the first 4 bits of $(E(L_3) \oplus K_3) \oplus (E(L_3^*) \oplus (K_3)) = E(L_3) + E(L_3^*)$ We know Input1 \oplus Input1^{*}

Ex. We know $L_3 = 101110$ We know $L_3^* = 000010$ $E(L_3) = 1011110$ $E(L_3^*) = 00000010$ First 4 bits of $E(L_3) \oplus E(L_3^*)$ are 1011 This is Input1 \oplus Input1* We can use the fact that Input1 \oplus Input1* = 1101 to reduce the possible inputs into S-boxes to 16 possibilities