MATH 314-Class Notes

10/11/2016
Scribe: Ben Alden
Summary: Todays class covered the introduction to DES and the general format for a Feistel System.

Notes:

DES- Data Encryption Standard
It was a form of Encryption used for almost all digital communication from the 70's till around 2000.

It is still used today in legacy applications, mainly banking.
History: In 1972 NBS (now NIST) put out a request for a new Cryptosystem. IBM Submitted their system (LUCIFER). NSA made changes to LUCIFER and the result was published in 1975 as DES. In 1990 Biham and Shamir published a technique called differential cryptanalysis that could crack a DES like system using 15 rounds (DES uses 16).

Overall Philosophy: Diffusion and Confusion

- Diffusion: Small changes in the plaintext have big changes on the ciphertext. Ideally changing one bit of the plaintext should change about half the digits of the ciphertext.
- Confusion: Every bit of the ciphertext should depend on the entire key in a way that is hard to predict.

Simplified DES (SDES):

DES is a Feistel System:

- We work with $\operatorname{bits}\left(F_{2}\right)$
- Use \oplus to denote bitwise addition in F_{2}
- Write our plaintext in binary and split it into two halves $->L_{0}$ and R_{0} (have m bits each)
- Choose n different keys $\left(k_{0}, k_{1}, \ldots k_{n}\right) n=$ number of rounds

Define a function $\left(R_{i}, k_{i+1}\right)$ that outputs m bits.
Encryption: Get the $i^{\text {th }}$ step from the $i-1^{\text {th }}$ step.
$L_{i}=R_{i-1}$
$R_{i}=L_{i-1} \oplus f\left(R_{i-1}, k_{i}\right)$
R_{i-1} becomes L_{i}
$L_{i-1} \oplus f\left(R_{i-1}, k_{i}\right)$ becomes R_{i}

Repeat this process n times.
Decryption:
Key fact is that in $F_{2}(x \oplus y) \oplus y=x$
Swap L_{n} and R_{n}
Repeat encryption steps with keys: $k_{n}, k_{n-1}, \ldots k_{1}$
Repeat n times
$L_{n}=R_{n-1}$
$R_{n}=L_{n-1} \oplus f\left(R_{n-1}, k_{n}\right)$

SDES

- Messages will have 12 bits
- L_{0}, R_{0} will have 6 bits
- Master key: 9 bit string
- Keys k_{i} is the 8 bits of the master key starting with bit i and wrapping around.

Examples: $k=101100110$
$k_{1}=10110011$
$k_{2}=01100110$
$k_{3}=11001101$
$k_{4}=10011010$
Define $f\left(R_{i-1}, k_{1}\right)$:
First: Need an expander function (Diffusion Step) $E(x)$ function that takes in 6 bits and outputs 8 .
123456 turns into:
12434356

Ex: $E(101011)$: 10010111
Second: S-Box (Confusion Step)
S-Box takes in 4 bits and outputs 3 bits
$S_{1}=$
(0) 101010001110011100111000
(1) 001100110010000111101011
$S_{2}=$
(0) 100000110101111001011010
(1) 101011000111110010001100

The first bit determines the row to use in the S-box
The last 3 bits (that number) describes which column to use

Example:

$S_{1}(1110)$ The first deterimes that it is the second row. The 110 is in Decimal 6 meaning the $6^{\text {th }}$ (or $7^{\text {th }}$ when starting with the first row being 1) meaning the output is 101 .
R_{i-1} which is 6 bits is fed into the expansion function, making it 8 bits. It is then \oplus with k_{i} which would still be 8 bits. Then that is split in half, with the upper left most half being fed into S_{1} and lower fed into S_{2}. After that they are both put together as the output.

Try yourself with Message[100001111000] and Master Key: 110010110 using the formula:
$\overline{L_{i}}=R_{i-1}$
$R_{i}=L_{i-1} \oplus f\left(R_{i-1}, k_{i}\right)$
$k=110010110$
$k_{1}=11001011$
$k_{2}=10010110$
$k_{3}=00101101$
$L_{0}=100001 R_{0}=111000$
$L_{1}=111000 R_{1}=L_{0} \oplus f\left(R_{0}, k_{1}\right)$
$E(111000)=11010100$
$11010100 \oplus 11001011=00011111$
$S_{1}(0001)=010$
$S_{2}(1111)=100$
Output $=010100$
Finally $R_{1}=100001 \oplus 010100=110101$
Repeat until $n=4$

