Math 314-Fall 2016
Worksheet 2 November 1st, 2016

Name:
Partner:
\qquad

S-BOX for S-AES

Input	Output	Input	Output
0000	1001	1000	0110
0001	0100	1001	0010
0010	1010	1010	0000
0011	1011	1011	0011
0100	1101	1100	1100
0101	0001	1101	1110
0110	1000	1110	1111
0111	0101	1111	0111

Use S-AES to encrypt the plaintext $P_{1}=0011001100110000$ using the key $K=0100110001110000$.

Determine the RoundKeys:

$K_{0}=0100110001110000$
K_{1} : Break into two pieces: $W_{0}=$ \qquad $W_{1}=$ \qquad Compute $g\left(W_{1}\right):($ Remember, $i=1$ in this step.)

$g\left(W_{1}\right)$: \qquad
$W_{2}=W_{0} \oplus g\left(W_{1}\right):$ \qquad $W_{3}=W_{1} \oplus W_{2}:$ \qquad .
$K_{1}=W_{2} W_{3}$: \qquad .
K_{2} :
Compute $g\left(W_{3}\right):($ Remember, $i=2$ in this step.)

$g\left(W_{3}\right):$
$W_{4}=W_{2} \oplus g\left(W_{3}\right):$ \qquad $W_{5}=W_{3} \oplus W_{4}:$ \qquad .
$K_{2}=W_{4} W_{5}$: \qquad -.

Round 0: Add Round Key: $P \oplus K_{0}$: \qquad .
Round 1: Substitution: \qquad
\qquad .

Round 1: Shift Rows: First, write as a matrix filling entries in down columns,

Then shift the entries in the bottom row.

Round 1: Mix Columns:

Convert elements to \mathbb{F}_{16}, and then perform the matrix multiplication:

$$
\left.\begin{array}{rl}
E M=\left[\begin{array}{cc}
1 & x^{2} \\
x^{2} & 1
\end{array}\right]\left[\begin{array}{l}
\square \\
\square
\end{array}\right]=[\square \\
\equiv[\square \\
\square \square & \square \\
\square & \square
\end{array}\right]
$$

Round 1: Add Round Key:
Rewrite as string C_{1} : \qquad
Compute $C_{1} \oplus K_{1}$: \qquad
Round 2: Substitution: \qquad .
Round 2: Shift Rows: First, write as a matrix filling entries in down columns,

Then shift the entries in the bottom row.

Round 2: Add Round Key:
Rewrite as string C_{2} : \qquad
Compute $C_{2} \oplus K_{2}$: \qquad
Final Cipher Text: $C=$ \qquad

Part 2

Check your work with Sage! Correct the above as necessary.
Now, suppose you want to send a second message, $P_{2}=1010110111000000$, using the same key. Using Sage (no need to do this by hand) determine the corresponding ciphertexts to be sent if you are using:
Electronic Codebook (ECB):
$C_{1}=E_{K}\left(P_{1}\right):$ \qquad
$C_{2}=E_{K}\left(P_{2}\right):$
Cipher Block Chaining (CBC): (Use $C_{0}=0000000000000000$.)
$C_{1}=E_{K}\left(P_{1} \oplus C_{0}\right):$
$C_{2}=E_{K}\left(P_{2} \oplus C_{1}\right):$ \qquad

Note: For the following modes, you will need 4 plaintexts with 8 bits each, $P_{1}=00110011, P_{2}=00110000, P_{3}=10101101, P_{4}=11000000$. The functions L_{8} and R_{8} grab the left 8 and right 8 bits of a binary string respectively. (Note this is slightly different from the book since we are using 16 bit strings rather than 64 bit strings.)
Cipher Feedback (CFB): (Use $X_{1}=0000000000000000$.)
$O_{1}=L_{8}\left(E_{K}\left(X_{1}\right)\right):$ $C_{1}=P_{1} \oplus O_{1}$: \qquad
$X_{2}=R_{8}\left(X_{1}\right) C_{1}:$ \qquad
$O_{2}: \quad C_{2}:$ X_{3} : \qquad
$O_{3}: \square$ C_{3} : X_{4} : \qquad
O_{4} : \qquad C_{4} : \qquad
Output Feedback (OFB): (Use $X_{1}=0000000000000000$.)
$O_{1}=L_{8}\left(E_{K}\left(X_{1}\right)\right):$ \qquad $C_{1}=P_{1} \oplus O_{1}:$ \qquad

$$
X_{2}=R_{8}\left(X_{1}\right) O_{1}
$$

\qquad
O_{2} \qquad C_{2} : X_{3} : \qquad
O_{3} : \qquad C_{3} : X_{4} : \qquad
O_{4} : \qquad C_{4} : \qquad
Counter (CTR): (Use $X_{0}=0000000000000000$.)
X_{1} : \qquad $O_{1}=L_{8}\left(E_{K}\left(X_{1}\right)\right):$ \qquad $C_{1}=P_{1} \oplus O_{1}$: \qquad
X_{2} : \qquad O_{2} : \qquad C_{2} : \qquad $X_{3}: \square$ O_{3} : C_{3} : \qquad
X_{4} \qquad $O_{4}: \quad C_{4}$: \qquad

