(1) Find all first and second partial derivatives.
a.) f(x,y) = 2* In(a? +°)
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(2) Find an equation of the tangent plane to the surface z = e* cosy at the point (0,0, 1).
z=x+1

(3) Find the equation of the tangent plane to the level surface 7 = f(z,y, 2) = /22 + y? + 22
at the point (3,2,6).
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(4) Show that the following limit does not exist
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Along the line z = 3® the limit becomes
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Since these two values are not equal, the limit does not exist.
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(5) Let C' be the curve with parametrization r(t) = tsinti+ tcostj. Find the equation of
the tangent line to the curve C' at ¢t = T

z.
v'(t) = (tcost +sint)i+ (—tsint + cost) j

so the tangent line is parameterized by
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(6) Suppose you need to know an equation of the tangent plane to a surface S at the point
P(2,1,3). You don’t have an equation for S, but you know that the curves

ri(t) =(2+3t, 1 —1* 3 —4t+t*), and
ro(u) = (14+u? 2u® — 1, 2u + 1)

both lie on S and pass through P. Find an equation of the tangent plane TpS. r(?)
passes through (2,1,3) when ¢ = 0, and ro(t) passes through (2,1,3) when u = 1, so we
take the tangent vectors at each of these curves at this point, we get r}(0) = (3,0 — 4),
r5(1) = (2,6,2). Since both of these tangent vectors lie in the tangent plane at this
point, their cross product (—14, 18) is normal to the plane at this point, thus an equation
for the tangent plane is

0=24(z—2) — 14(y — 1) + 18(z — 3).

(7) Find the directional derivative of f(z,y) = z%e™ at the point (—2,0), in the direction
of the point (2,—3). The vector pointing from (-2,0) to (2,-3) is (4,—3). The unit
vector pointing in this direction is u = (3, —2). The gradient of f(x,y) at (-2,0) is

Vf(=2,0) = (—4,—4), so

4 3\ -16+12 4

Duf(=2,0) = (—4,—4) - { =, -2\ = .

F2.0) = (-4, —p (5.-3) = TEEE 2

(8) a.) Find the gradient of f; b.) Evaluate the gradient at the point P; ¢.) Find the rate
of change of f at the point P in the direction of the vector u.

f(z,y) = sin(2z + 3y)
P =(—6,4)

1 ..
u= 5(\/§I—J)

a.Vf = (2cos(2z + 3y), 3 cos(2z + 3y)).
b. (2,3).
c. V3 — %
(9) Find the maximum rate of change of the function f(z,y) = ye™ at the point (0, 2), and
give the direction that it occurs. Since Vf = (y?e™, (zy + 1) e™), the greatest rate of

change is v/42 + 12 = +/17, which occurs in the direction < , \/;177 )
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(10) (a) Find the unique critical point of the function
f(z,y) = 2* + 32y + 2y* — 8z — 11y + 30.

(b) Is this critical point a minimum, maximum, or saddle?
Since f, = 2x+ 3y — 8 and f, = 3x + 4y — 11, the only critical point is (z,y) = (1,2).
Since D = 2 -4 — 3% = —1 this is a saddle point.
(11) Find the absolute maximum and the absolute minimum of

flxy) = (@ = 1)(y - 2)
in the closed triangle 0 < z, 0 < y, x +y < 7 bounded by the z-axis, the y-axis, and
the linez +y =7.
The only critical point of this function is (1,2), which is inside of this triangle, and it
has no critical points along the x or y axes. Along the line z + y = 7, the function has
a critical point at (3,4), so we need to check the points

(z,9) | f(z,9)
(1L,2) | 0
(34)| 4
00) | 2
(7,0) | -12
07| -5

Thus the absolute maximum is 4 and the absolute minimum is -12.
(12) Find parametric equations for
(a) The plane through (1,3,4) and orthogonal to n = (2,1, —1).
r(u,v) = (u,v,2(u — 1) 4+ (v —3) +4).
(b) The sphere centered at the origin and having radius 5.
r(u,v) = (5bcosusinv, 5sinusinv,5cosv), u < 2w, 0 < v < 7.
(¢) The sphere centered at the point (2, —1,3) and with radius 5.
r(u,v) = <5cosusinv —2,5sinusinv 4+ 1,5cosv —3), u <271, 0 <wv < 7.
(d) Theconex +y? =22 0<2<2,
(veosu,vsinu,v), 0 <u <27, 0<0v <2,

2+2y
(13) Evaluate / / / ydzdyde. —5
x 0 2z J z=1x3 +y

(14) Let F(x,y) = 2?yi + 2zy?j. Compute

W/Fdr

Where C'is the line from (0,0) to (2,4) along the curve y = x
Parameterize C by r(t) = (t,t2), 0 < ¢ < 2. Then

2

2 25 29
/F -dr:/ <t4,2t5>-(1,2t)dt:/ 4t dt = — + =
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(15) Evaluate the integral // xdx dy where R is the triangle with vertices (1,2), (3,3),
R
(4,5).

2y—3 Y4:
// asda:dy—l—// rdrdy =4
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(16) Let F(x,y) = P(z,y)i+ Q(x,y)j = (#* + y*)i + 2zyj and Let v be the curve which
follows the parabola y = z? from (0,0) to (2,4), and the line segments from (2,4) to
(0,4), and from (0,4) to (0,0). Use Green’s theorem to evaluate fw F -dr.

2 4
/ / 2y — 2y dydxr =0
0 Jz2

(17) The cardioid is the curve with polar equation
r=1—cos#, 0<6<2m.

and is given parametrically by z(t) = cos(t) — cos?(t), y(t) = sin(t) — cos(t)sin(t),
0<t< 27,

Use Green’s theorem to find the area of the region inside the cardioid by evaluating

the integral
% xdy.
c

(cost — cos® t)(cost — cos® t + sin® t)dt
cos?t — 2cos® t + cos* t + costsin®t — cos? t sin? tdt

—2cost + 3costsin?®t + 2cos* t dt

21 - ,
1+ 2cos2t ot
= —2cost+3costsin2tdt+/ - C082+COS dt
0
:0+/%1+2C082t+1+cos4t:3_7rdt
0 2 4 2

(18) Let S be the quarter of the disk of radius 1 in the yz-plane centered at the origin for
which y > 0 and z > 0. Consider the vector field F(z,y, z) = (y, z,z). Orient S so that
its normal vector points in the direction of the positive z-axis.

(a) Give the boundary C of S the orientation induced by the right-hand rule. With
this orientation, compute the line integral

%F-ds.
c

Break this curve into three pieces:

Cli Tl(t) == <0,t,0>7 (0 S t S 1)

Cy: ro(t) = (0, cost,sint), (0 <t < 7/2) and
C3: r3(t) = (0,0,1 =), (0<t<1)



Then

%F-ds:/F-ds—F/F-ds%—/ F-ds
c o)) Cs Cs

1 z 1
:/ (t70,0)-<0,1,0>dt+/ (cost,sint,O)-(O,—sint,cost)dt+/ (0,1—¢,0)-(0,0, —1)dt
0 0 0
/2 T
:0+/ —sin®tdt+0=——
0 4

(b) Compute the curl of the vector field, V x F. (—1,—1,—1)
(c) Verify Stokes’ Theorem by computing

//VxF~dS.
S

Since this region lies in the yz plane, it has normal vector (1,0,0). Thus

//SVXF.dS://S<—1,_1,_1>.<1,o,o>d5://5—1d5:_%

_ 1 _ :
(19) Let W(x,y,z) = T and let F = VIV be the gradient of W.
(a) Calculate F and the divergence of F, V - VIV.

ro(_ x B Y B z
(@2 +y2+ 222 (@2 g2+ 227 (a4 g2+ 22)Y
V-F=0

(b) Use the divergence theorem to calculate the outward flux

J[[¥-as

through the surface o which is the boundary of the solid .S bounded by the xy-plane
and by the hemispheres

z=\/4d—2?>—y?> and z=+/9—2%—1y>

J[Feas = [[[ awrav o



