\qquad
(1) Let $f(x)=(x+1)^{5}-5 x+2$. Find the intervals of increase or decrease, the local maximum and minimum values, intervals of concavity and the inflection points.

Compute: $f^{\prime}(x)=5(x+1)^{4}-5, f^{\prime \prime}(x)=20(x+1)^{3}$.
To find critical points set $f^{\prime}(x)=0: 5=5(x+1)^{4}$ so $(x+1)^{4}=1$, thus the critical points are $x=-2,0$. We can check that $f^{\prime}(x)>0$ for $x<-2, f^{\prime}(x)<0$ for $-2<x<0$ and $f^{\prime}(x)>0$ for $x>0$. Thus f is increasing on $(-\infty,-2) \cup(0, \infty)$ and decreasing on $(-2,0)$. The first derivative test shows that $x=-2$ is a local max and $x=0$ is a local min.

Using the second derivative we find that $f^{\prime \prime}(x)=0$ when $x=-1$. Since $f^{\prime \prime}(x)<0$ when $x<-1$ and $f^{\prime \prime}(x)>0$ when $x>-1$, we have that $x=-1$ is an inflection point, and is concave down on $(-\infty,-1)$ and concave up on $(-1, \infty)$.
(2) Let $g(x)=x \sqrt{6-x}$. Find the intervals of increase or decrease, the local maximum and minimum values, intervals of concavity and the inflection points.

Note that the domain of $g(x)$ is $x \leq 6$.
Compute:

$$
\begin{gathered}
g^{\prime}(x)=-\frac{x}{2 \sqrt{6-x}}+\sqrt{6-x}, \\
g^{\prime \prime}(x)=-\frac{\sqrt{6-x}+\frac{x}{2 \sqrt{6-x}}-\frac{1}{2(6-x)}}{2 \sqrt{6-x}} \\
=-\frac{1}{\sqrt{6-x}}-\frac{x}{4(6-x)^{3 / 2}}
\end{gathered}
$$

To find critical points set $g^{\prime}(x)=0: \sqrt{6-x}=\frac{x}{2 \sqrt{6-x}}$ so $2(6-x)=x$, thus the only critical point is $x=4$. We can check that $g^{\prime}(x)>0$ for $x<4, g^{\prime}(x)<0$ for $4<x<6$ and $f^{\prime}(x)>0$ for $x>0$. Thus f is increasing on $(-\infty, 4)$ and decreasing on $(4,6)$.
The first derivative test shows that $x=4$ is a local maximum.
Setting $g^{\prime \prime}(x)=0$ we get $-\frac{1}{\sqrt{6-x}}=\frac{x}{4(6-x)^{3 / 2}}$. Multiplying both sides by $4(6-x)^{3 / 2}$ we get $-4(6-x)=x$ when $x=8$. Since this is outside the domain the function has no inflection points and since $g^{\prime \prime}(x)<0$ it is concave down on $(\infty, 6)$.
(3) Compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{3 x}$

This has the indeterminant form $\frac{0}{0}$. Using L'Hospital's rule this becomes

$$
\lim _{x \rightarrow 0} \frac{\sin x}{3}=0 .
$$

(b) $\lim _{x \rightarrow 0} \frac{\ln (x+1)}{e^{x}-1}$

This has the indeterminant form $\frac{0}{0}$. Using L'Hospital's rule this becomes

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{x+1}}{e^{x}}=1 .
$$

