Math 273 - Fall 2015 Practice Midterm 3

- (1) Find the (exact) maximum and minimum values of $f(x) = x 2\sin x$ on the interval $[0, 2\pi]$. Minimum: $\frac{\pi}{3} - \sqrt{3}$ at $x = \frac{\pi}{3}$. Maximum: $\frac{5\pi}{3} + \sqrt{3}$ at $x = \frac{5\pi}{3}$.
- (2) Let $f(x) = x^3 4x$.
 - (a) Find the intervals on which f is increasing or decreasing. Increasing: $(-\infty, -\frac{2}{\sqrt{3}})$ $(\frac{2}{\sqrt{3}}, \infty)$, Decreasing: $(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}})$.
 - (b) Find the local maxima and minima of f. Local Maximum: $\left(-\frac{2}{\sqrt{3}}, \frac{16}{3\sqrt{3}}\right)$, Local Minimum: $\left(\frac{2}{\sqrt{3}}, -\frac{16}{3\sqrt{3}}\right)$
 - (c) Find the intervals on which f is concave up or concave down. Concave down: $(-\infty,0)$, Concave up: $(0,\infty)$.
 - (d) Find the inflection points of f. (0,0)
 - (e) Sketch the curve.
- (3) Find the limits of the following functions.
 - (a) $\lim_{x\to 0^+} \frac{\sqrt{x}}{\ln x}$. 0
 - (b) $\lim_{x \to 0} \frac{\sin(x) x}{x^3}$. $-\frac{1}{6}$
 - (c) $\lim_{x\to 0} \frac{e^x 1}{\sin(x) 1}$. 0
- (4) Find f(x) given the information below.
 - (a) $f'(x) = x \sqrt{x} + 1/x$. $f(x) = \frac{x^2}{2} \frac{2x^{3/2}}{3} + \ln|x| + C$ (b) $f'(x) = \sin(x) + \cos(x)$. $f(x) = -\cos(x) + \sin(x) + C$

 - (c) $f''(x) = 4e^x + 1$, f'(0) = 1, f(0) = 2. $f(x) = 4e^x + \frac{x^2}{2} 3x 2$
- (5) Find the rectangle of largest area that can be inscribed in a semicircle of radius r. Area:
- (6) Find the point on the line y = 2x + 3 that is closest to the origin. $\left(-\frac{6}{5}, \frac{3}{5}\right)$
- (7) A stone is dropped off of a cliff. It accelerates downward due to gravity at 32 ft/sec and hits the ground travelling 120 ft/sec. How high was the cliff? 225 feet
- (8) Show that the equation $f(x) = 2x + \cos x = 0$ has exactly one real root. Since $f(-\frac{\pi}{2}) =$ $-\pi$ and $f(\frac{\pi}{2}) = \pi$ it must have at least one root by the Intermediate value theorem. However since $f'(x) = 2 - \sin(x) > 0$ for all x, f(x) is increasing for all values of x, and therefore cannot have more than one root.

1