- (1) Find the (exact) maximum and minimum values of $f(x) = x 2\sin x$ on the interval $[0, 2\pi].$
- (2) Let $f(x) = x^3 4x$.
 - (a) Find the intervals on which f is increasing or descreasing.
 - (b) Find the local maxima and minima of f.
 - (c) Find the intervals on which f is concave up or concave down.
 - (d) Find the inflection points of f.
 - (e) Sketch the curve.
- (3) Find the limits of the following functions.

(a)
$$\lim_{x \to 0^+} \frac{\sqrt{x}}{\ln x}$$
.
(b) $\lim_{x \to 0} \frac{\sin(x) - x}{e^{x-1}}$
(c) $\lim_{x \to 0} \frac{e^{x-1}}{\sin(x) - 1}$

(d)
$$\lim_{x \to 0^+} \frac{\mathbf{v}^{x}}{\ln x}$$

- (d) $\lim_{x\to 0^+} \frac{1}{\ln x}$. (4) Find f(x) given the information below.
 - (a) $f'(x) = x \sqrt{x} + 1/x$.
 - (b) $f'(x) = \sin(x) + \cos(x)$.

(c) $f''(x) = 4e^x + 1$, f'(0) = 1, f(0) = 2.

- (5) Find the rectangle of largest area that can be inscribed in a semicircle of radius r.
- (6) Find the point on the line y = 2x + 3 that is closest to the origin.
- (7) A stone is dropped off of a cliff. It accelerates downward due to gravity at 32 ft/sec and hits the ground travelling 120 ft/sec. How high was the cliff?
- (8) Show that the equation $2x + \cos x = 0$ has exactly one real root.