Exponential Growth and Decay of M\&Ms

Materials:

3 large bags of M\&Ms
6 plastic plates
class set of TI-84 Graphing Calculators
handout

Group students in pairs. Each pair should receive two plastic plates, a large bag of M\&Ms and two calculators.

The Classic M-\&-M Spill (Decay) Experiment

1. Count out $100 \mathrm{M} \& \mathrm{Ms}$ from the bag.
2. Place $M \& M s$ between two plates, shake, and then count the number with " M " side up. Set aside all M\&Ms that are not " M " side up. Record both the shake number and number of M\&Ms remaining on the plate in the table below.

shake number	number of M\&Ms remaining on plate
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

3. Repeat step 2 until there are no more M\&Ms left.
4. Enter the shake number and number of M\&Ms remaining respectively into lists $\mathbf{L 1}$ and $\mathbf{L 2}$ in the calculator. [Note - do not enter the final pair of data values when number of M\&Ms equals 0]

- To enter data in lists, type STAT >> EDIT

5. Construct a scatterplot of the data.

- Use [2nd]-[STATPLOT] to set Plot1 up as a scatterplot of the data, with L1 for the Xlist, and L2 for the Ylist.
- Type $2^{\text {ND }} \gg$ STAT PLOT >> ENTER
- Highlight ON
- Under Type, choose the scatterplot (first graph)
- Make sure Xlist is L1 and Ylist is L2
- Set up the [WINDOW] with appropriate values for $X_{\text {min }}, X_{\text {max }}, Y_{\text {min }}$ and $Y_{\text {max }}$.
- Type [GRAPH] to create the scatterplot representing the data in your lists.

6. Describe the relationship that exists between x and y ? \qquad

- As the value of x increases, the value of y \qquad .
- This rate of \qquad [increase / decrease] becomes \qquad [greater / less] as values of x increase.

7. Construct a function that models this experiment. If you start with $100 \mathrm{M} \& \mathrm{Ms}$, how many would you expect to land " M " side up \qquad on shake number 1? Using the number of $M \& M$ s that you expected to land " M " side up in shake number 1 , how many would you expect to land " M " side up on shake number 2 ? Continue the pattern.
shake number number of $M \& M$ s remaining
1

2

3
4

The function that models this experiment is \qquad .
Interpret the values (constants and variables) of your function.
8. Graph this function along with your scatterplot from step 5. On your calculator

- Type $\mathbf{Y}=$
- The expression of your function that you found in the previous step in terms of X
- Type GRAPH

9. Describe this function.

Exponential Growth Experiment

1. Start with 4 M\&Ms from the bag.
2. Place the M\&Ms between two plates, shake, and then record the shake number and the number of M\&Ms with " \mathbf{M} " side up in the table below.

shake number	total number of M\&Ms	M\&Ms with an M face up
1	4	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
14		

3. Add the number of M\&Ms with " \mathbf{M} " side up to the number of $M \& M$ s that you shook in the previous step for a new total number of M\&Ms.
4. Repeat steps 2 and 3 until you have exhausted all M\&Ms from the bag.
5. Enter the shake number and the total number of M\&Ms respectively into lists L1 and L2 in the calculator.

- To enter data in lists, type STAT >> EDIT

6. Construct a scatterplot of the data.

- Use [2nd]-[STATPLOT] to set Plot1 up as a scatterplot of the data, with L1 for the Xlist, and L2 for the Ylist.
- Type $\left[\mathbf{2}^{\text {nd }}\right] \gg$ [STAT PLOT] \gg [ENTER]
- Highlight ON
- Under Type, choose the scatterplot (first graph)
- Make sure Xlist is L1 and Ylist is L2
- Set up the [WINDOW] with appropriate values for $X_{\text {min }}, X_{\text {max }}, Y_{\text {min }}$ and $Y_{\text {max }}$.
- Type [GRAPH] to create the scatterplot representing the data in your lists.

7. What type of relationship exists between x and y ? \qquad

- As the value of x increases, the value of y \qquad -.
- This rate of \qquad [increase / decrease] becomes \qquad [greater / less] as values of x increase.

8. Construct a function that models this experiment. If you start with $\mathbf{k} M \& M s$ on the first shake, how many total M\&Ms would you expect to have on the second shake? Using the total number of M\&Ms that you expected to have in shake number 2 , how many total M\&Ms would you expect to have in shake number 3 ? Continue the pattern.
shake number total number of $M \& M s$

1

2

3

4

The function that models this experiment is \qquad _.

Interpret the values (constants and variables) of your function.
9. Graph this function along with your scatterplot from step 5. On your calculator

- Type $Y=$
- The expression of your function that you found in the previous step in terms of X
- Type GRAPH

10. Describe this function.
