Advances in Geographic Profiling

Mike O’Leary

Department of Mathematics
Towson University

31st Applied Geography Conference
Wilmington, DE
October 2008
Acknowledgments

- Towson University Applied Mathematics Laboratory
 - Undergraduate research projects in mathematics sponsored by companies and government agencies
 - Student participants in 2005-06, 2006-07, and 2007-08:
 - Lauren Amrhine, Brooke Belcher, Brandie Biddy, Colleen Carrion, Chris Castillo, Paul Corbitt, Gregory Emerson, Adam Fojtik, Yu Fu, Natasha Gikunju, Laurel Mount, Kristopher Seets, Jonathan Vanderkolk, Grant Warble, Ruozhen Yao, Melissa Zimmerman
 - Faculty participants:
 - Coy L. May (Towson University) (2005-2007)
 - Andrew Engel (SAS) (2005)

- National Institute of Justice
 - Supported by 2005-IJ-CX-K036 and 2007-DE-BX-K005
 - Special thanks to Ron Wilson for his support
 - Thanks to Stanley Erickson, Iara Infosino, and Tommy Sexton

- Phil Canter, Baltimore County Police Department
The Geographic Profiling Problem

How can we estimate for the location of the anchor point of a serial offender from knowledge of the locations of the offender’s crime sites?

- The anchor point can be the offender’s place of residence, place of work, or some other location important to the offender.
What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous

There should be explicit connections between assumptions on offender behavior and the components of the model.

The method should be able to take into account local geographic features.

It should be able to account for geographic features that influence the selection of a crime site.

It should be able to account for geographic features that influence the potential anchor points of offenders.

The method should be based on data that is available to the jurisdiction(s) where the offenses occur.

The method should return a prioritized search area for law enforcement officers.
The Geographic Profiling Problem

What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous
2. There should be explicit connections between assumptions on offender behavior and the components of the model
What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous
2. There should be explicit connections between assumptions on offender behavior and the components of the model
3. The method should be able to take into account local geographic features
The Geographic Profiling Problem

What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous
2. There should be explicit connections between assumptions on offender behavior and the components of the model
3. The method should be able to take into account local geographic features
 - It should be able to account for geographic features that influence the selection of a crime site
The Geographic Profiling Problem

What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous
2. There should be explicit connections between assumptions on offender behavior and the components of the model
3. The method should be able to take into account local geographic features
 - It should be able to account for geographic features that influence the selection of a crime site
 - It should be able to account for geographic features that influence the potential anchor points of offenders
The Geographic Profiling Problem

What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous
2. There should be explicit connections between assumptions on offender behavior and the components of the model
3. The method should be able to take into account local geographic features
 - It should be able to account for geographic features that influence the selection of a crime site
 - It should be able to account for geographic features that influence the potential anchor points of offenders
4. The method should be based on data that is available to the jurisdiction(s) where the offenses occur
The Geographic Profiling Problem

What qualities should a good geographic profiling method possess?

1. The method should be logically rigorous
2. There should be explicit connections between assumptions on offender behavior and the components of the model
3. The method should be able to take into account local geographic features
 - It should be able to account for geographic features that influence the selection of a crime site
 - It should be able to account for geographic features that influence the potential anchor points of offenders
4. The method should be based on data that is available to the jurisdiction(s) where the offenses occur
5. The method should return a prioritized search area for law enforcement officers
Existing Methods

- Spatial distribution strategies

 - Estimate the anchor point with the centroid of the crime series locations
 - Estimate the anchor point with the center of minimum distance from the crime locations
 - Canter's Circle hypotheses: The anchor point is contained in a circle whose diameter is formed by the two crime locations that are farthest apart
 - Probability distance strategies

- These have been implemented in software:
 - CrimeStat (Ned Levine)
 - Dragnet (David Canter)
 - Rigel (Kim Rossmo)
Existing Methods

- Spatial distribution strategies
 - Estimate the anchor point with the centroid of the crime series locations
Existing Methods

- Spatial distribution strategies
 - Estimate the anchor point with the centroid of the crime series locations
 - Estimate the anchor point with the center of minimum distance from the crime locations
Existing Methods

- Spatial distribution strategies
 - Estimate the anchor point with the centroid of the crime series locations
 - Estimate the anchor point with the center of minimum distance from the crime locations
 - Canter’s Circle hypotheses:

- Probability distance strategies
 - These have been implemented in software
 - CrimeStat (Ned Levine)
 - Dragnet (David Canter)
 - Rigel (Kim Rossmo)

Mike O'Leary (Towson University) Advances in Geographic Profiling Applied Geography Conference 11 / 47
Existing Methods

- Spatial distribution strategies
 - Estimate the anchor point with the centroid of the crime series locations
 - Estimate the anchor point with the center of minimum distance from the crime locations
 - Canter’s Circle hypotheses:
 - The anchor point is contained in a circle whose diameter is formed by the two crime locations that are farthest apart

- Probability distance strategies
 - These have been implemented in software:
 - CrimeStat (Ned Levine)
 - Dragnet (David Canter)
 - Rigel (Kim Rossmo)

Mike O'Leary (Towson University)
Advances in Geographic Profiling
Applied Geography Conference
Existing Methods

- **Spatial distribution strategies**
 - Estimate the anchor point with the centroid of the crime series locations
 - Estimate the anchor point with the center of minimum distance from the crime locations
 - Canter’s Circle hypotheses:
 - The anchor point is contained in a circle whose diameter is formed by the two crime locations that are farthest apart

- **Probability distance strategies**
Existing Methods

- **Spatial distribution strategies**
 - Estimate the anchor point with the centroid of the crime series locations
 - Estimate the anchor point with the center of minimum distance from the crime locations
 - Canter’s Circle hypotheses:
 - The anchor point is contained in a circle whose diameter is formed by the two crime locations that are farthest apart

- **Probability distance strategies**
 - These have been implemented in software
 - CrimeStat (Ned Levine)
 - Dragnet (David Canter)
 - Rigel (Kim Rossmo)
Mathematical Review of Existing Methods

To understand these methods, let us adopt some common notation

- A point x will have two components $x = (x^{(1)}, x^{(2)})$.
 - These can be latitude and longitude
 - These can be the distances from a pair of reference axes

- Distance between the points x and y will be $d(x, y)$.
 - Allowable choices for the distance include
 - The usual Euclidean distance $d_2(x, y) = \sqrt{(x^{(1)} - y^{(1)})^2 + (x^{(2)} - y^{(2)})^2}$
 - The Manhattan distance $d_1(x, y) = |x^{(1)} - y^{(1)}| + |x^{(2)} - y^{(2)}|$
 - The road network distance from x to y
 - The time to travel from x to y

- The series consists of n crimes at the locations x_1, x_2, \ldots, x_n
- The offender’s anchor point will be denoted by z.
Mathematical Review of Existing Methods

- Existing algorithms begin by first making a choice of distance metric \(d \); they then select a decay function \(f \) and construct a hit score function \(S(y) \) by computing

\[
S(y) = \sum_{i=1}^{n} f(d(x_i, y)) = f(d(x_1, y)) + \cdots + f(d(x_n, y)).
\]

- Regions with a high hit score are considered to be more likely to contain the offender’s anchor point \(z \) than regions with a low hit score.

- A map of the hit score is provided to the analyst.
Mathematical Review of Existing Methods

Rossmo’s method:

- The distance metric is the Manhattan distance
- The distance decay function f is

$$f(d) = \begin{cases} \frac{k}{d^h} & \text{if } d > B, \\ \frac{kB^{g-h}}{(2B-d)^g} & \text{if } d \leq B. \end{cases}$$

Canter’s method:

- The distance metric is the Euclidean distance.
- The decay function is either \(f(d) = e^{-\beta d} \) or
 \[
 f(d) = \begin{cases}
 0 & \text{if } d < A, \\
 b & \text{if } A \leq d < B, \\
 Ce^{-\beta d} & \text{if } d \geq B.
 \end{cases}
 \]

Mathematical Review of Existing Methods

Levine’s method:

- The distance metric is the Euclidean distance
- The decay function can be linear, exponentially decaying, truncated exponentially decaying, normal, lognormal, or a function fit to decay data.

- The latest version of CrimeStat (3.1) has a new Bayesian algorithm, significantly different from this approach.

Suppose that the offender chooses to offend at the location x with unknown probability density $P(x)$.

On what variables should the probability density $P(x)$ depend?

- The anchor point z of the offender
 - Each offender needs to have a unique anchor point
 - The anchor point must have a well-defined meaning—e.g. the offender’s place of residence
 - The anchor point needs to be stable during the crime series

- The average distance α the offender is willing to travel from their anchor point
 - Different offender’s have different levels of mobility—an offender will need to travel farther to commit some types of crimes (e.g. liquor store robberies, bank robberies) than others (e.g. residential burglaries)
 - This varies between offenders
 - This varies between crime types

Other variables can be included

We are left with the assumption that an offender with anchor point z and mean offense distance α commits an offense at the location x with probability density $P(x \mid z, \alpha)$.
A New Mathematical Approach

- Our mathematical problem then becomes the following:
 - Given a sample \(x_1, x_2, \ldots, x_n \) (the crime sites) from a probability distribution \(P(x \mid z, \alpha) \), estimate the parameter \(z \) (the anchor point).
- This is a well-studied mathematical problem
- One approach is the theory of maximum likelihood.
 - Construct the likelihood function
 \[
 L(y, \alpha) = \prod_{i=1}^{n} P(x_i \mid y, \alpha) = P(x_1 \mid y, \alpha) \cdots P(x_n \mid y, \alpha)
 \]
 - Then the best choice of \(z \) is the choice of \(y \) that makes the likelihood as large as possible.
 - This is equivalent to maximizing the log-likelihood
 \[
 \lambda(y, \alpha) = \sum_{i=1}^{n} \ln P(x_i \mid y, \alpha) = \ln P(x_1 \mid y, \alpha) + \cdots + \ln P(x_n \mid y, \alpha)
 \]
 - The log-likelihood has a similar structure to the hit score method
 - Rossmo mentions the possibility of constructing hit scores by multiplication in Rossmo, K. (2000). *Geographic profiling*, CRC Press
Bayesian Analysis

- Suppose that there is only one crime site x. Then Bayes’ Theorem implies that

$$P(z, \alpha | x) = \frac{P(x | z, \alpha) \pi(z, \alpha)}{P(x)}$$

- $P(z, \alpha | x)$ is the *posterior* distribution
 - It gives the probability density that the offender has anchor point z and the average offense distance α, given that the offender has committed a crime at x

- $\pi(z, \alpha)$ is the *prior* distribution.
 - It represents our knowledge of the probability density for the anchor point z and the average offense distance α before we incorporate information about the crime
 - If we assume that the choice of anchor point is independent of the average offense distance, we can write

$$\pi(z, \alpha) = H(z)\pi(\alpha)$$

where $H(z)$ is the prior distribution of anchor points, and $\pi(\alpha)$ is the prior distribution of average offense distances

- $P(x)$ is the *marginal* distribution
Bayesian Analysis

- A similar analysis holds when there is a series of \(n \) crimes; in this case

\[
P(z, \alpha \mid x_1, \ldots, x_n) = \frac{P(x_1, \ldots, x_n \mid z, \alpha)\pi(z, \alpha)}{P(x_1, \ldots, x_n)}.
\]

- If we assume that the offender’s choice of crime sites are mutually independent, then

\[
P(x_1, \ldots, x_n \mid z, \alpha) = P(x_1 \mid z, \alpha) \cdots P(x_n \mid z, \alpha)
\]

giving us the relationship

\[
P(z, \alpha \mid x_1, \ldots, x_n) \propto P(x_1 \mid z, \alpha) \cdots P(x_n \mid z, \alpha)H(z)\pi(\alpha).
\]

- Because we are only interested in the location of the anchor point, we take the conditional distribution with respect to \(\alpha \) to obtain the following
Fundamental Theorem of Geographic Profiling

Suppose that an unknown offender has committed crimes at \(x_1, x_2, \ldots, x_n \), and that

- The offender has a unique stable anchor point \(z \)
- The offender chooses targets to offend according to the probability density \(P(x \mid z, \alpha) \) where \(\alpha \) is the average distance the offender is willing to travel
- The target locations in the series are chosen independently
- The prior distribution of anchor points is \(H(z) \), the prior distribution of the average offense distance is \(\pi(\alpha) \) and these are independent of one another.

Then the probability density that the offender has anchor point at the location \(z \) satisfies

\[
P(z \mid x_1, \ldots, x_n) \propto \int_0^\infty P(x_1 \mid z, \alpha) \cdots P(x_n \mid z, \alpha) H(z) \pi(\alpha) \, d\alpha
\]
The framework is independent of the significance of the anchor point z

This framework holds for any model of offender behavior $P(x \mid z, \alpha)$

This framework holds for any choice of prior distributions $H(z)$ and $\pi(\alpha)$

The framework is independent of the choice of distance metric

Geographic features that affect crime selection can be incorporated into the form of $P(x \mid z, \alpha)$

Geographic features that affect the selection of anchor points are incorporated into the form of $H(z)$

The framework provides a prioritized search area; the framework estimates $P(z \mid x_1, \ldots, x_n)$ which is the probability density for the offender’s anchor point; by definition locations where $P(z \mid x_1, \ldots, x_n)$ are larger are more likely to contain the anchor point than regions where it is smaller.
Using the Fundamental Theorem

- For the mathematics to be useful, we need to be able to:
 - Make some reasonable choice for our model for offender behavior
 - Make some reasonable choice for the prior distribution of anchor points
 - Make some reasonable choice for the prior distribution of the average offense distance, and
 - Be able to evaluate the mathematical terms that appear
Suppose that we assume that offenders choose offense sites according to a normal distribution, so that

\[P(x | z, \alpha) = \frac{1}{4\alpha^2} \exp \left(-\frac{\pi}{4\alpha^2} |x - z|^2 \right). \]

If we also assume that all offenders have the same average offense distance \(\alpha \), and that all anchor points are equally likely, then

\[P(z | x_1, \ldots, x_n) = \left(\frac{1}{4\alpha^2} \right)^n \exp \left(-\frac{\pi}{4\alpha^2} \sum_{i=1}^{n} |x_i - z|^2 \right). \]

The mode of this distribution - the point most likely to be the offender’s anchor point - is the mean center of the crime site locations.
Models of Offender Behavior

- Suppose that we assume that offenders choose offense sites according to a negative exponential distribution, so that

\[P(x \mid z, \alpha) = \frac{2}{\pi \alpha^2} \exp \left(-\frac{2}{\alpha} |x - z| \right). \]

- If we also assume that all offenders have the same average offense distance \(\alpha \), and that all anchor points are equally likely, then

\[P(z \mid x_1, \ldots, x_n) = \left(\frac{2}{\pi \alpha^2} \right)^n \exp \left(-\frac{2}{\alpha} \sum_{i=1}^{n} |x_i - z| \right) \]

- The mode of this distribution- the point most likely to be the offender’s anchor point- is the center of minimum distance of the crime site locations.
Models of Offender Behavior

- What would a more realistic model for offender behavior look like?
 - Consider a model in the form

 \[P(x \mid z, \alpha) = D(d(x, z), \alpha) \cdot G(x) \cdot N(z) \]

 - \(D \) models the effect of distance decay using the distance metric \(d(x, z) \)
 - We can specify a normal decay, so that \(D(d, \alpha) = \frac{1}{4\alpha^2} \exp\left(-\frac{\pi}{4\alpha^2} d^2\right) \)
 - We can specify a negative exponential decay, so that \(D(d, \alpha) = \frac{2}{\pi\alpha^2} \exp\left(-\frac{2}{\alpha} d\right) \)
 - Any choice can be made for the distance metric (Euclidean, Manhattan, \textit{et.al})
 - \(G \) models the geographic features that influence crime site selection
 - High values for \(G(x) \) indicate that \(x \) is a likely target for typical offenders;
 - Low values for \(G(x) \) indicate that \(x \) is a less likely target
 - \(N \) is a normalization factor, required to ensure that \(P \) is a probability distribution
 - \(N(z) = \left[\int \int D(d(y, z), \alpha) G(y) \, dy^{(1)} \, dy^{(2)} \right]^{-1} \)
 - \(N \) is completely determined by the choices for \(D \) and \(G \).
G models the geographic features that influence crime site selection, with high values indicating the location was more likely to be targeted by an offender.

How can we calculate G?

- Use available geographic and demographic data and the correlations between crime rates and these variables that have already been published to construct an appropriate choice for $G(x)$
 - Different crime types have different etiologies; in particular their relationship to the local geographic and demographic backcloth depends strongly on the particular type of crime. This would limit the method to only those crimes where this relationship has been well studied
- Some crimes can only occur at certain, well-known locations, which are known to law enforcement
 - For example, gas station robberies, ATM robberies, bank robberies, liquor store robberies
 - This does not apply to all crime types—e.g. street robberies, vehicle thefts.
- We can assume that historical crime patterns are good predictors of the likelihood that a particular location will be the site of a crime.
Suppose that historical crimes have occurred at the locations \(c_1, c_2, \ldots, c_N \).

Choose a kernel density function \(K(y | \lambda) \)

- \(\lambda \) is the bandwidth of the kernel density function

Calculate \(G(x) = \sum_{i=1}^{N} K(d(x, c_i) | \lambda) \)

- The bandwidth \(\lambda \) can be e.g. the mean nearest neighbor distance
- Effectively this places a copy of the kernel density function on each crime site and sums

This is essentially the same as a commonly used method for hot spot analysis.
Convenience Store Robberies, Baltimore County
To understand distance decay we begin by examining the idea of a buffer zone:

- A buffer zone is a region around the offender’s anchor point where they are less likely to offend, presumably due to a fear of being recognized.
- Consider the following models of offender behavior:

Which shows evidence of a buffer zone?
To understand distance decay we begin by examining the idea of a buffer zone:

- A buffer zone is a region around the offender’s anchor point where they are less likely to offend, presumably due to a fear of being recognized.
- Consider the following models of offender behavior:

Which shows evidence of a buffer zone?

These are two views of the same distribution.
To understand distance decay we begin by examining the idea of a buffer zone.

- A buffer zone is a region around the offender’s anchor point where they are less likely to offend, presumably due to a fear of being recognized.
- Consider the following models of offender behavior:

Which shows evidence of a buffer zone?

- These are two views of the same distribution
- If the offender is using a two-dimensional normal distribution to select targets, then the appropriate distribution for the offense distance is the *Rayleigh* distribution.
Distance Decay

- Suppose that the (two-dimensional) distance decay component \(D(d(x, z) | \alpha) \) is modeled with a Euclidean distance \(d \).

- Then the (one-dimensional) distribution of offense distances \(D_{\text{one-dim}}(d | \alpha) \) is given by

\[
D_{\text{one-dim}}(d | \alpha) = 2\pi d \cdot D(d | \alpha)
\]

- In particular, \(D_{\text{one-dim}}(d | \alpha) \rightarrow 0 \) as \(d \rightarrow 0 \), regardless of the particular choice of \(D(d | \alpha) \), provided \(D(0 | \alpha) < \infty \).
Distance Decay: Residential Burglaries in Baltimore County

Baltimore County Residential Burglaries 1991-2008

Mike O’Leary (Towson University) Advances in Geographic Profiling Applied Geography Conference
Distance Decay: Non-Residential Burglaries in Baltimore County
Distance Decay: Data Fitting

- Suppose that we measure the aggregate number of offenders who commit a crime at a distance d from their anchor point; call the relative fraction $A(d)$.
- Different offenders are willing to travel different distances to offend; $\pi(\alpha)$ was defined to be the probability distribution for the average offense distance across offenders.
- Suppose that each offender chooses targets according to $D_{\text{one-dim}}(d | \alpha)$
- Then
 \[
 A(d) = \int_{0}^{\infty} D_{\text{one-dim}}(d | \alpha) \pi(\alpha) \, d\alpha
 \]
- $A(d)$ can be sampled
- $D_{\text{one-dim}}(d | \alpha)$ modeled
- $\pi(\alpha)$ is the unknown prior distribution for average offense distance.
Suppose that we have a sample \(\{d_1, d_2, \ldots, d_S\} \) from \(A(d) \). Then to find \(\pi \), we need to solve the integral equation

\[
A(d) = \int_0^{\infty} D_{\text{one-dim}}(d | \alpha) \pi(\alpha) d\alpha.
\]

The process of inverting this Fredholm integral equation is ill-posed.

Both \(A(d) \approx 0 \) and \(D_{\text{one-dim}}(d | \alpha) \approx 0 \) for \(d \gg 0 \), so we can collocate and discretize the integral equation, and obtain an (ill-posed) linear system.

The linear system can be solved via SVD decomposition using a Tikhonov regularization; the optimal value of the regularization parameter can be found via L-curve analysis.
Distance Decay: Residential Burglaries in Baltimore County - Model Fit
Distance Decay: Non-Residential Burglaries in Baltimore County - Model Fit

Non-residential Burglaries in Baltimore County 1991-2008
Approximating Model

Mike O'Leary (Towson University)
Distance Decay: Residential Burglaries in Baltimore County- Prior Distribution

Average distance for residential burglary in Baltimore County

Mike O'Leary (Towson University) Advances in Geographic Profiling Applied Geography Conference 39 / 47
Distance Decay: Residential Burglaries in Baltimore County - Prior Distribution by Age

![Graph showing distance decay and prior distribution by age.](image-url)
Anchor Points

- We have assumed
 - Each offender has a unique, well-defined anchor point that is stable throughout the crime series
 - The function $H(z)$ represents our prior knowledge of the distribution of anchor points before we incorporate information about the crime series.
- What are reasonable choices for the anchor point?
 - Residences
 - Places of work
- Suppose that anchor points are residences- can we estimate $H(z)$?
 - Population density information is available from the U.S. Census at the block level, sorted by age, sex, and race/ethnic group.
 - We can use available demographic information about the offender
 - Set $H(z) = \sum_{i=1}^{N_{\text{blocks}}} = p_i K(z - q_i | \sqrt{A_i})$
 - Here block i has population p_i, center q_i, and area A_i.
 - Distribution of residences of past offenders can be used.
 - Calculate $H(z)$ using the same techniques used to calculate $G(x)$.
Washington D.C., 18-29 year old white non-hispanic men
Washington D.C., 18-29 year old white hispanic men
Washington D.C., 18-29 year old black men
- Code that implements this method is nearing completion, and will be released to police agencies.
Software

- **Required Input:**
 - Crime series locations
 - Representative selection of the locations of historically similar crimes, (as determined by the analyst) to estimate target attractiveness
 - Geographic boundaries of the jurisdiction(s) reporting the crime series and historical crimes
 - Available demographic information about the offender, if any
 - Locations of both anchor points and crime sites of historically similar crimes (as determines by the analyst) to estimate the distribution of average offense distances

- **The code will then automatically**
 - Calculate an estimate of the target attractiveness distribution
 - Estimate the prior distribution of anchor points, assuming anchor point density is proportional to population density
 - Estimate the prior distribution of average offense distances

- **The code will then return a map giving the probability distribution for offender anchor points**
 - Available output formats include .kml and .csv, for display and analysis
 - is a wide range of further applications.
Questions?

Mike O’Leary
Department of Mathematics
Towson University

moleary@towson.edu