Determining the Optimal Search Area for a Serial Criminal

Towson University
Applied Mathematics Laboratory

Dr. Mike O'Leary

Modeling and Simulation Technical Working Group
Jersey City, NJ
March 2006
Applied Mathematics Laboratory

- Looks for undergraduate research projects in mathematics.
- Established at Towson University in 1980.
- We form teams of 2-6 undergraduate students, led by 1-2 faculty members and potentially one M.S. student.
- Usually, we work on one research problem each year.
Recent Projects

- Carroll Area Transit System (2004-2005)
- Baltimore County Department of Environmental Planning and Resource Management (2003-2005)
- Baltimore City Fire Department (2002-2003)
2005-06 Participants

- Dr. Coy L. May, Dr. Andrew Engel, Dr. Mike O'Leary
- Paul Corbitt
- Brandie Biddy, Brooke Belcher, Greg Emerson, Laurel Mount, Ruozhen Yao, Melissa Zimmerman
The Question

- What is the optimal search area for a serial criminal?
Centrographic Measures

- Centroid
- Center of minimum distance
- Center of the circle
- Harmonic mean
- Geometric mean
Probability Distance Strategies

- Suppose we have a series of linked crimes committed at points $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$.
- For any point \bar{z}, the relative likelihood function $\sigma(\bar{z})$ is

$$\sigma(\bar{z}) = \sum_{i=1}^{n} f(d(\bar{x}_i, \bar{z}))$$

Here f is a probability density function and $d(\bar{x}_i, \bar{z})$ is the distance between \bar{x}_i and \bar{z}.
Probability Distance Strategies

- Rossmo

\[\sigma(\vec{z}) = k \sum_{i=1}^{n} \frac{\phi}{(|x_i^{(1)} - z^{(1)}| + |x_i^{(2)} - z^{(2)}|)^f} \]

\[+ k \sum_{i=1}^{n} \frac{(1-\phi)B^{g-f}}{(2B - |x_i^{(1)} - z^{(1)}| - |x_i^{(2)} - z^{(2)}|)^g} \]

- Here \(k, B, f, g \) are all empirical constants.
- \(\phi = 0 \) if \(\vec{z} \) is in a buffer zone of size \(B \) around \(\vec{x}_i \), while \(\phi = 1 \) if \(\vec{z} \) is outside the buffer zone.
Our Approach

- Postulate: There is an \textit{a priori} function \(P(\vec{x}; \vec{z}, \vec{\beta}) \) that gives the probability that an offender with anchor point \(\vec{z} \) commits a crime at the point \(\vec{x} \).
 - \(\vec{\beta} \in \mathbb{R}^k \) represents additional parameters.
 - Both \(\vec{z} \) and \(\vec{\beta} \) are unknown.
- Given: A series of crimes committed at points \(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \).
- What is the best estimate of the anchor point \(\vec{z} \)? What is the best estimate of \(\vec{\beta} \)?
Maximum Likelihood Estimate

- The maximum likelihood estimate for \tilde{z} is

$$\tilde{z} = \arg\max_{\tilde{z}} \prod_{i=1}^{n} P(\tilde{x}_i; \tilde{z}, \tilde{\beta})$$

- We only assume that $P(\tilde{x}; \tilde{z}, \tilde{\beta})$ has a particular form, and then choose the parameter(s) that best match the data.
Advantages

- We can explicitly incorporate other features into the model by choosing $P(\tilde{x} ; \tilde{z} , \tilde{\beta})$ judiciously.
 - Geography
 - Demographics
 - Jurisdictional boundaries
 - Buffer zones
- The MLE method applies regardless of the precise form of $P(\tilde{x} ; \tilde{z} , \tilde{\beta})$.
Questions

- What is the right form for $P(\tilde{x}; \tilde{z}, \tilde{\beta})$?
 - Ideally, this should be calculated from empirical data.
 - Are there reasonable choices?
 - Start with the simplifying assumption: geography is homogeneous.
Gaussian Distribution

- If we assume P is Gaussian:

$$P(\tilde{x}, \tilde{z}, \sigma) = \frac{1}{2\pi\sigma^2} \exp \left(-\frac{|\tilde{x} - \tilde{z}|^2}{2\sigma^2} \right)$$

then the maximum likelihood estimate of \tilde{z} is exactly the centroid.

- This remains true if we allow P to have variance $\tilde{\sigma} = (\sigma_1, \sigma_2)$ and correlation ρ.
Exponential Distribution

- If we assume that P is exponential

$$P(\tilde{x} ; \tilde{z} , \beta) = \frac{1}{2\pi \beta^2} \exp\left(-\frac{|\tilde{x} - \tilde{z}|}{\beta} \right)$$

then the maximum likelihood estimate for \tilde{z} is the center of minimum distance.

- This remains true if $|\tilde{x} - \tilde{z}|$ is replaced by another distance function $d(\tilde{x} , \tilde{z})$.
Geography

- Add some simple geographic features.
Geography

• Regions
 • Ω: Jurisdiction(s). Crimes and anchor points may be located here.
 • E: “elsewhere”. Anchor points may lie here, but we have no data on crimes here.
 • W: “water”. Neither anchor points nor crimes may be located here.

• In all other respects, we assume the geography is *homogeneous*.
Geography

- Let π be the distance dependence; for example we can use the Gaussian
 \[\pi(s; \beta) = \exp\left(-\frac{s^2}{\beta}\right) . \]

- We would like to define
 \[P(\vec{x}; \vec{z}) = \pi(|\vec{x} - \vec{z}|) = \exp\left(-\frac{|\vec{x} - \vec{z}|^2}{\beta}\right) \text{ if } \vec{x} \in \Omega, \vec{z} \in \Omega \cup E \]
 \[P(\vec{x}; \vec{z}) = 0 \text{ if } \vec{x} \notin \Omega \text{ or } \vec{z} \in W . \]

- This needs to be normalized to become a probability distribution.
Thus we have

\[
P(\vec{x}; \vec{z}, \vec{\beta}) = \frac{\pi(|\vec{x} - \vec{z}|)}{\iiint_{\Omega} \pi(|\vec{y} - \vec{z}|) \, dy_1 \, dy_2} = \frac{\exp\left(-\frac{|\vec{x} - \vec{z}|^2}{\beta}\right)}{\iiint_{\Omega} \exp\left(-\frac{|\vec{y} - \vec{z}|^2}{\beta}\right) \, dy_1 \, dy_2}
\]

for \(x \in \Omega, z \in \Omega \cup E \) and

\[P(\vec{x}; \vec{z}) = 0\]

otherwise.
Implementation

- Given: a sequence of crimes committed at \(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \).
- Assumption: The distance dependence \(\pi \) is Gaussian.
- Assumption: Any two crime locations in \(\Omega \) are equiprobable, and no (known) crimes occur outside \(\Omega \).
- Assumption: Any two anchor points in \(\Omega \cup E \) are equiprobable, and no anchor points occur in \(\mathcal{W} \).
Implementation

- Find the choice of \hat{z} that solves

$$\max_{\hat{z} \in \Omega \cup E} \prod_{i=1}^{n} \int_{\Omega} \pi(|\hat{x}_i - \hat{z}|) \frac{\pi(|\hat{y} - \hat{z}|)}{\int_{\Omega} \pi(|\hat{y} - \hat{z}|) dy_1 dy_2} \exp\left(-\frac{1}{\beta} \sum_{i=1}^{n} |\hat{x}_i - \hat{z}|^2 \right)$$

$$= \max_{\hat{z} \in \Omega \cup E} \left[\int_{\Omega} \exp\left(-\frac{|\hat{y} - \hat{z}|^2}{\beta} \right) dy_1 dy_2 \right]^{n}$$
Implementation

The student team is:

- Implementing this algorithm in Python, and
- Linking the result to ArcGIS so that they can be used together.
Current Status

- Write geographic data from ArcGIS into a file. ★ Done
- Writing programs that can plot points in ArcGIS. ★ Done
- Reading geographic data from a file into Python. ★ Testing
- Re-writing the double integral as a line integral to ease computation. ★ Done
Current Status

- Numerical evaluation of the line integrals in Python.
- Python code to determine if a point is in a set.
- Choosing an algorithm to find the optimum.
- Implementing the optimization algorithm in Python.

* Testing
* Testing
* In progress
* Not yet
Current Status

- Integrating all of the parts into one program. ✴ Not yet
- Testing. ✴ Not yet
- Compare results against empirical data (to be provided by Phil Canter, Baltimore County Police Department)
Pre-preliminary results
Next Steps

- Look at other distance-decay models.
 - We can explicitly model buffer zones with this method.
Next Steps

- When calculating a proposed anchor point, also compare the best estimates of the parameters β with historical / empirical data.
- Bad fits of the parameters might suggest times when the model is inappropriate.
Next Steps

- Look directly at empirical data to determine the proper form for \(P(\vec{x}; \vec{z}, \vec{\beta}) \).
 - What is the “right” distance-decay function?
- Allow \(P(\vec{x}; \vec{z}, \vec{\beta}) \) to depend on more nuanced geographical features?
 - e.g. population density

\[
P(\vec{x}; \vec{z}, \vec{\beta}) = \pi(\|\vec{x} - \vec{z}\|) \rho(\vec{x})
\]
Next Steps

- Bayesian analysis may let us determine the probability density function for the criminal's anchor point, rather than a point estimate.
Questions?

Contact information:
Dr. Mike O'Leary
Director, Applied Mathematics Laboratory
Towson University
Towson, MD 21252
410-704-7457
moleary@towson.edu