A New Mathematical Technique for Geographic Profiling

Towson University
Applied Mathematics Laboratory

Dr. Mike O'Leary

The NIJ Conference
Criminal Justice Research, Development, and Evaluation in the Social and Physical Sciences
Washington, D.C.
July 17-19, 2006

Supported by the NIJ through grant 2005–IJ–CX–K036
Acknowledgments

- Towson University Applied Mathematics Laboratory
- Coy L. May (Towson University)
- Andrew Engel (SAS)

Student Team:

- Paul Corbitt
 - Brooke Belcher
 - Brandie Biddy
 - Gregory Emerson
- Laurel Mount
 - Ruozhen Yao
 - Melissa Zimmerman
Geographic Profiling

- The Question:
 Given a series of linked crimes committed by the same offender, can we make predictions about the anchor point of the offender?

- The anchor point can be a place of residence, a place of work, or some other commonly visited location.
Implementation

- CrimeStat
 - Ned Levine
- Dragnet
 - David Canter
- Rigel
 - Kim Rossmo
- Predator
 - Maurice Godwin
Current Techniques

- Spatial distribution strategies
- Probability distance strategies
Spatial Distribution Strategies

Centroid:
- Use the average value of the crime coordinates
Spatial Distribution Strategies

- Center of minimum distance:
 - Find the point where the sum of the distance to all crime sites is minimized.

![Diagram showing anchor point and crime locations with distance sums]

- Distance sum = 10.63
- Distance sum = 9.94
- Smallest possible sum!
Spatial Distribution Strategies

Circle Method:

- Use the center of the smallest circle that encloses all crime scenes
Probability Distribution Strategies

- The anchor point is located in a region with a high “hit score”.
- The hit score $H(z)$ has the form

$$H(z) = \sum_{i=1}^{n} h(z, x_i)$$

$$= h(z, x_1) + h(z, x_2) + \cdots + h(z, x_n)$$

where x_i are the crime locations and $h(z, x)$ has a defined form.
Probability Distribution Strategies

- Linear:
 \[h(z, x) = a - b |x - z| \]
Probability Distance Strategies

- Negative exponential
 \[h(z, x) = A \exp(-B |x - z|) \]
Probability Distance Strategies

- Normal distribution

\[h(z, x) = A \exp\left(-B |x - z|^2\right) \]
Probability Distance Strategies

- Truncated negative exponential:
Shortcomings

- What is the theoretical justification?
 - What assumptions are being made about criminal behavior?
 - What mathematical assumptions are being made?
 - How do you check the assumptions?
Shortcomings

- How do you add in local information?
- How could you incorporate socio-economic variables into the model?

Snook, *Individual differences in distance travelled by serial burglars*
Malczewski, Poetz & Iannuzzi, *Spatial analysis of residential burglaries in London, Ontario*
Bernasco & Nieuwbeerta, *How do residential burglars select target areas?*
Osborn & Tseloni, *The distribution of household property crimes*
Shortcomings

- The convex hull effect:
 - The anchor point always occurs inside the convex hull of the crime locations.
A New Approach

- In previous methods, the unknown quantity was:
 - The anchor point
 (spatial distribution strategies)
 - The hit score
 (probability distance strategies)
- We use a different unknown quantity.
A New Approach

- Let $P(x; z)$ be the density function for the probability that an offender with anchor point z commits a crime at location x.
- This distribution is our new unknown.
- This has criminological significance.
 - In particular, assumptions about the form of $P(x; z)$ are equivalent to assumptions about the offender's behavior.
The Mathematics

- Given crimes located at \(x_1, x_2, \ldots, x_n \), the maximum likelihood estimate for the anchor point \(z \) is the value of \(z \) that maximizes

\[
L(z) = \prod_{i=1}^{n} P(x_i, z)
\]

or equivalently, the value that maximizes

\[
\lambda(z) = \sum_{i=1}^{n} \ln P(x_i, z)
\]

\[
= \ln P(x_1, z) + \ln P(x_2, z) + \cdots + \ln P(x_n, z)
\]
Relation to Spatial Distribution Strategies

- If we make the assumption that offenders choose target locations based only on a distance decay function in normal form, then

\[P(\mathbf{x}; \mathbf{z}) = A \exp(-B|\mathbf{x} - \mathbf{z}|^2) \]

- The maximum likelihood estimate for the anchor point is the centroid.
Relation to Spatial Distribution Strategies

- If we make the assumption that offenders choose target locations based only on a distance decay function in exponentially decaying form, then

$$P (x; z) = A \exp (-B |x - z|)$$

- The maximum likelihood estimate for the anchor point is the center of minimum distance.
Relation to Probability Distance Strategies

- We can generate a hit score by using either

\[L(z) = \prod_{i=1}^{n} P(x_i, z) \quad \lambda(z) = \sum_{i=1}^{n} \ln P(x_i, z) \]

- If we multiply rather than add in the usual method of probability distance strategies, we obtain our method.
Advantages

- Our method recaptures existing methods.
- Assumptions about offender behavior can be directly used in the model.
- We can explicitly incorporate information about geography and socio-economic factors into the model.
- We do not suffer from the convex hull problem.
Better Models

• Recall that $P(x; z)$ is the density function for the probability that an offender with anchor point z commits a crime at the point x.

• Suppose that $P(x; z)$ has the general form

$$P(x; z) = K(|x - z|) \cdot G(x) \cdot N(x; z)$$

Dispersion kernel
Geographic factors
Normalization
The Simplest Case

- We have information about crimes committed by the offender only for a portion of the region.
The Simplest Case

- **Regions**
 - Ω: Jurisdiction(s). Crimes and anchor points may be located here.
 - E: “elsewhere”. Anchor points may lie here, but we have no data on crimes here.
 - W: “water”. Neither anchor points nor crimes may be located here.
 - In all other respects, we assume the geography is *homogeneous*.
The Simplest Case

- We know $z \notin W$ and $P(x ; z) = 0$ if $x \notin \Omega$.
- We set
 \[
 G(x) = \begin{cases}
 1 & x \in \Omega \\
 0 & x \notin \Omega
 \end{cases}
 \]

 We choose an appropriate dispersion kernel; say

 \[
 K(x ; z) = \exp \left(-\frac{|x - z|^2}{\sigma^2} \right)
 \]

- The required normalization function is
 \[
 N(x ; z) = \left[\iint_\Omega \exp \left(-\frac{|y - z|^2}{\sigma^2} \right) dy_1 dy_2 \right]^{-1}
 \]
Sample Results

Baltimore County
Vehicle Theft
Predicted Anchor Point
Offender's Home
Sample Results

- Crimes were vehicle thefts in 2003-2004.
 - Data provided by Phil Canter, Baltimore County Police Department.
- Predicted anchor point was not in the convex hull of the crime locations.
Better Models

- Method is just a modification of the centroid method that accounts for possibly missing crimes outside the jurisdiction.
- Clearly, better models are needed.
- This is ongoing work.
- More data!
Questions?

Contact information:
Dr. Mike O'Leary
Director, Applied Mathematics Laboratory
Towson University
Towson, MD 21252
410-704-7457
moleary@towson.edu