Read: 2.1 and 2.2 (Pages 61-71.)

1. Prove that the operator \(u \mapsto \Delta u \) in \(\mathbb{R}^n \) is rotationally symmetric, that is if \(A \) is an \(n \times n \) orthogonal matrix and if \(y = Ax \), then

\[
\left(\frac{\partial^2}{\partial y_1^2} + \cdots + \frac{\partial^2}{\partial y_n^2} \right) u = \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right) u
\]

2. Prove that, in \(n \)-dimensions, if \(u \) depends only on \(r = (x_1^2 + \cdots + x_n^2)^{1/2} \) then

\[
\Delta u = n - 1 \cdot u_r + u_{rr}.
\]

3. Solve 1.7.1

4. Prove that

\[
\int_0^1 x J_n(\lambda x)J_n(\mu x) \, dx = \frac{\mu J_n(\lambda)J'_n(\mu) - \lambda J_n(\mu)J'_n(\lambda)}{\lambda^2 - \mu^2}
\]

for \(\lambda \neq \mu \).

HINT: Let \(y_1 = J_n(\lambda x) \) and \(y_2 = J_n(\mu x) \). Find differential equations that \(y_1 \) and \(y_2 \) satisfy. Multiply the equation for \(y_1 \) by \(y_2 \) and vice-versa; then add. Look for an exact derivative.

5. Prove that

\[
\int_0^1 x J^2_n(\lambda x) \, dx = \frac{1}{2} \left\{ [J'_n(\lambda)]^2 + \left(1 - \frac{n^2}{\lambda^2} \right) J^2_n(\lambda) \right\}
\]

HINT: Pass to the limit \(\mu \to \lambda \) in the previous problem.

6. Let \(A \) and \(B \) be constants, not both zero, and suppose that \(\lambda \) and \(\mu \) are different roots of

\[
AJ_n(x) + BJ'_n(x) = 0.
\]

Prove that

\[
\int_0^1 x J_n(\lambda x)J_n(\mu x) \, dx = 0.
\]

7. Suppose that

\[
f(x) = \sum_{k=1}^{\infty} c_k J_n(\lambda_k x)
\]

for \(0 < x < 1 \), where \(0 < \lambda_1 < \lambda_2 < \cdots \) are the positive roots of \(J_0(x) = 0 \).

Prove that

\[
c_k = \frac{2}{J'_{n+1}(\lambda_k)} \int_0^1 x J_n(\lambda_k x)f(x) \, dx.
\]

8. Prove that

\[
\sum_{k=1}^{\infty} \frac{J_0(\lambda_k x)}{\lambda_k \cdot J_1(\lambda_k)} = \frac{1}{2}
\]

for any \(x \), where \(0 < \lambda_1 < \lambda_2 < \cdots \) are the positive roots of \(J_0(x) = 0 \).
9. Prove that
\[x^2 = \sum_{k=1}^{\infty} \frac{2(\lambda_k^2 - 4)J_0(\lambda_k x)}{\lambda_k^2 J_1(\lambda_k)} \]
for any \(x \), where \(0 < \lambda_1 < \lambda_2 < \cdots \) are the positive roots of \(J_n(x) = 0 \).

10. Use separation of variables on the problem
\[
\begin{cases}
 u_t - \Delta u = 0 \\
 u|_{t=0} = u_0 \\
 u|_{r=1} = 0
\end{cases}
\]
on the disc \(\{ (r, \theta) : 0 \leq r \leq 1 \} \). Show that
\[
u(r, t) = \sum_{k=1}^{\infty} \frac{2u_0}{\lambda_k J_1(\lambda_k)} J_0(\lambda_k r) e^{-\lambda_k^2 t} \]
Include all details.

11. Use separation of variables to solve the problem
\[
\begin{cases}
 u_t - \Delta u = 0 \\
 u|_{t=0} = u_0 r^2 \\
 u|_{r=1} = 0
\end{cases}
\]
on the disc \(\{ (r, \theta) : 0 \leq r \leq 1 \} \).