1. Prove that
\[\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = \frac{\mu J_n(\lambda) J'_n(\mu) - \lambda J_n(\mu) J'_n(\lambda)}{\lambda^2 - \mu^2} \]
for \(\lambda \neq \mu \).

Hint: Let \(y_1 = J_n(\lambda x) \) and \(y_2 = J_n(\mu x) \). Find differential equations that \(y_1 \) and \(y_2 \) satisfy. Multiply the equation for \(y_1 \) by \(y_2 \) and vice-versa; then add. Look for an exact derivative.

2. Prove that
\[\int_0^1 x J_n^2(\lambda x) \, dx = \frac{1}{2} \left\{ [J_n'(\lambda)]^2 + \left(1 - \frac{n^2}{\lambda^2} \right) J_n^2(\lambda) \right\} . \]

Hint: Pass to the limit \(\mu \to \lambda \) in the previous problem.

3. Let \(A \) and \(B \) be constants, not both zero, and suppose that \(\lambda \) and \(\mu \) are different roots of
\[AJ_n(x) + BJ'_n(x) = 0. \]

Prove that
\[\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = 0 . \]

4. Suppose that
\[f(x) = \sum_{k=1}^{\infty} c_k J_n(\lambda_k x) \]
for \(0 < x < 1 \), where \(0 < \lambda_1 < \lambda_2 < \cdots \) are the positive roots of \(J_n(x) = 0 \).

Prove that
\[c_k = \frac{2}{J_{n+1}^2(\lambda_k)} \int_0^1 x J_n(\lambda_k x) f(x) \, dx . \]

5. Prove that
\[\sum_{k=1}^{\infty} \frac{J_0(\lambda_k x)}{\lambda_k J_1(\lambda_k)} = \frac{1}{2} \]
for any \(x \), where \(0 < \lambda_1 < \lambda_2 < \cdots \) are the positive roots of \(J_n(x) = 0 \).

6. Prove that
\[x^2 = \sum_{k=1}^{\infty} \frac{2(\lambda_k^2 - 4)J_0(\lambda_k x)}{\lambda_k^2 J_1(\lambda_k)} \]
for any \(x \), where \(0 < \lambda_1 < \lambda_2 < \cdots \) are the positive roots of \(J_n(x) = 0 \).
7. Use separation of variables on the problem
\[
\begin{align*}
 \frac{\partial u}{\partial t} - \Delta u &= 0 \\
 u|_{t=0} &= u_0 \\
 u|_{r=1} &= 0
\end{align*}
\]
on the disc \(\{(r, \theta) : 0 \leq r \leq 1\} \). Show that
\[
u(r, t) = \sum_{k=1}^{\infty} \frac{2u_0}{\lambda_k J_1(\lambda_k)} J_0(\lambda_k r) e^{-\lambda_k^2 t}.
\]
Include all details.

8. Use separation of variables to solve the problem
\[
\begin{align*}
 \frac{\partial u}{\partial t} - \Delta u &= 0 \\
 u|_{t=0} &= u_0 r^2 \\
 u|_{r=1} &= 0
\end{align*}
\]
on the disc \(\{(r, \theta) : 0 \leq r \leq 1\} \).