Final Examination
Math 581
December 20, 1999

Name_________________________

You have 2 hours. All problems are worth the same amount. The use of graphing calculators is permitted.

§1 Computation

1) Calculate the following limits
 a) \(\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 2x} \)
 b) \(\lim_{x \to 0} \frac{e^{2x} - 1}{x} \)
 c) \(\lim_{x \to 0} (\cos x)^{1/x^2} \)

2) Calculate the derivative of each of the following functions.
 a) \(y(x) = \frac{\cos x}{x^2 + 1} \)
 b) \(y(x) = \ln \left(1 - \frac{1}{2 + \cos x} \right) \)
 c) \(y(x) = \tan^{-1} \left(\frac{1}{1 + x^2} \right) \)

3) Calculate the following.
 a) \(\int_0^1 x \ln(x + 3) \, dx \)
 b) \(\int \frac{dx}{x^2 \sqrt{x^2 - 1}} \).
 c) \(\int \ln x \, dx \).

4) What is the Divergence Theorem? Let \(Q \) be the solid region between the paraboloid \(z = 4 - x^2 - y^2 \) and the xy-plane. Verify the Divergence Theorem for the vector field \(\vec{F} = \left(2z, x, y^2 \right) \).

5) The Bessel function of order 1 is given by \(J_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}} \). What is the radius of convergence of this series? Show that \(J_1(x) \) solves the equation \(x^2 y'' + xy' + (x^2 - 1)y = 0 \).

6) Let \(A = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{pmatrix} \). Show that the null space \(\{X : AX = 0\} \) is a vector space, and find a basis for the null space. Show that the range \(\{B : AX = B\} \) is a vector space, and find a basis for the range.

7) Let \(A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \). Find all of the eigenvalues of \(A \) and the corresponding eigenspaces.
8) Solve:
 a) \(yy' - e^x = 0 \), \(y(0) = 1 \).
 b) \(y' + y = \sin x \), \(y(\pi) = 1 \).
 c) \(y'' - y' - 2y = e^{3x} \).

§2 Comprehension

9) Give a precise definition of the limit \(\lim_{x \to a} f(x) = L \). Use the precise definition to prove that
 \(\lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = 0 \).

10) Give a precise definition of the derivative of a function. Let \(f(x) = \sqrt{2x-1} \). Evaluate \(f'(5) \) from the definition.

11) Prove that \((1 + x)^n > 1 + nx \) for \(n = 2, 3, \ldots \) if \(x > -1 \) and \(x \neq 0 \).

12) What is a vector space? What is a subspace of a vector space? Give two examples of vector spaces whose elements are not members of \(\mathbb{R}^n \) or \(\mathbb{C}^n \). For each example, give a subspace of that vector space that contains at least two elements.

§3 Application

13) In Einstein’s special theory of relativity, the mass of an object moving with velocity \(v \) is
 \[
 m = \frac{m_0}{\sqrt{1 - v^2/c^2}}
 \]
 where \(m_0 \) is the mass of the object at rest, and \(c \) is the speed of light. The kinetic energy of the object is the difference between its total energy and its energy at rest,
 \[
 K = mc^2 - m_0c^2.
 \]
 Show that when \(v \) is small when compared with \(c \), that this expression agrees with the expression from classical Newtonian physics \(K = \frac{1}{2}mv^2 \). Estimate the error in this approximation.

14) According to the Biot-Savart law, and electrical current \(I \) flowing upward in a wire along the \(z \)-axis produces an magnetic field \(\mathbf{H} \) at the point \((x, y, z)\) of the form
 \[
 \mathbf{H}(x, y, z) = \frac{2I}{|\mathbf{r}|}(\mathbf{k} \times \mathbf{r})
 \]
 where \(\mathbf{k} = \langle 0, 0, 1 \rangle \) and \(\mathbf{r} = \langle x, y, 0 \rangle \). Show that if \(C \) is any smooth simple closed curve enclosing the \(z \)-axis, then \(\oint_C \mathbf{H} \cdot d\mathbf{r} = \pm 4\pi I \), while if \(C \) does not enclose the \(z \)-axis, then \(\oint_C \mathbf{H} \cdot d\mathbf{r} = 0 \).

15) What is the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid
 \[
 \frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{25} = 1?
 \]