1) Let \(Q(x, y, z) = 5x^2 + 6y^2 + 7z^2 + 4xy + 4yz \).
 a) Find the symmetric matrix \(M \) which represents \(Q \).
 b) Find the characteristic polynomial of \(M \).
 c) Find the eigenvalues of \(M \).
 d) Find a maximal set of nonzero orthogonal eigenvectors for \(M \).
 e) Find an orthogonal change of coordinates which diagonalizes \(M \).
 f) Identify the quadric surface \(Q(x, y, z) = 1 \).
 g) Graph the surface \(Q(x, y, z) = 1 \).
2) Let P be the inner product space consisting of all polynomials where the inner product is
\[
\langle p(x), q(x) \rangle = \int_{0}^{\infty} e^{-x} p(x) q(x) \, dx.
\]
a) Show that P is an inner product space.

b) The Laguerre polynomials \(\{L_n(x)\}_{n=0}^{\infty} \) are defined by the relationship \(L_n(x) = e^{x} \frac{d^n}{dx^n} \left(x^n e^{-x} \right) \). Find the Laguerre polynomials \(L_0(x), L_1(x), L_2(x), \) and \(L_3(x) \).

c) Show that the subset of the Laguerre polynomials \(\{L_0(x), L_1(x), L_2(x), L_3(x)\} \) form an orthogonal set in P.

d) Describe the subspace of P given by \(V = \operatorname{span}\{L_0(x), L_1(x), L_2(x), L_3(x)\} \) in terms of the basis of P given by \(\{1, x, x^2, x^3, \ldots\} \).

e) Find the projection of the function \(f(x) = x^5 \) onto V.

3) Let A be an $n \times n$ real valued matrix.
 a) Show that the set $\{X : AX = 0\}$ is a subspace of \mathbb{R}^n. This space is called the \textit{null-space} of the matrix A.
 b) Show that the set $\{B : AX = B\}$ is a subspace of \mathbb{R}^n. This space is called the \textit{range} of the matrix A.
 c) Let $A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 4 \\ 0 & 1 & 1 & 0 \\ 2 & 3 & 1 & 4 \end{pmatrix}$. Find an orthonormal basis for the null space of A.
 d) For the same A as in (c), find an orthonormal basis for the range of A.
4) An $n \times n$ real symmetric matrix A is positive definite if $X^TAX > 0$ whenever $X \neq 0$.

a) Show that a matrix is positive definite if $\langle AX, X \rangle > 0$ for all $X \neq 0$, where $\langle u, v \rangle$ is the usual inner product on \mathbb{R}^n.

b) Prove that the diagonal elements of a positive definite matrix must be positive.

c) Prove that the eigenvalues of a positive definite matrix are all positive.

d) Show that the determinant of A is positive.

e) Show that A is invertible.