The use of graphing calculators is permitted. All problems are worth the same amount.

1)
 a) State precisely the theorem that describes when and to what a Fourier series converges.
 b) In a homework problem we derived the expansion
 \[e^{ax} \approx 2 \sinh a \pi \left[\frac{1}{2a} + \sum_{n=1}^{\infty} \frac{(-1)^n}{a^2 + n^2} (a \cos nx - n \sin nx) \right] \]
 for \(a \neq 0 \). What is the value of the series
 \[\frac{2 \sinh a \pi}{\pi} \left[\frac{1}{2a} + \sum_{n=1}^{\infty} \frac{(-1)^n}{a^2 + n^2} (a \cos nx - n \sin nx) \right] \]
 when \(x = 0 \)? When \(x = \pi/2 \)? When \(x = \pi \)?

2)
 a) One edge of a square plate is kept at a uniform temperature \(u_0 \), while the other three edges are kept a temperature zero. Without solving a boundary value problem, but by superposition of solutions to like problems to obtain the trivial case in which all four edges are at temperature \(u_0 \), show that the temperature at the center of the square is \(u_0 / 4 \).
 b) In a homework problem, we showed that the temperature in a solid sphere of radius \(a \), initially at temperature \(f(r) \), whose surface is kept at temperature zero is
 \[u(r,t) = \frac{2}{a r} \sum_{n=1}^{\infty} \exp \left\{ -\frac{n^2 \pi^2 k}{a^2} t \right\} \sin \left(\frac{n \pi r}{a} \right) \int_0^a s f(s) \sin \left(\frac{n \pi s}{a} \right) ds . \]
 If the sphere is 40cm in diameter, the initial temperature is 100°C, and \(k = 0.15 \) in cgs (centimeters-grams-seconds) units, estimate the temperature at the center of the sphere 15 minutes after cooling begins. Explain the degree of accuracy of your estimate. You may use the fact that \(\lim_{\theta \to 0} \sin \theta = 1 \) without comment.

3) Obtain a formal solution to the boundary value problem
 \[\begin{cases}
 u_t(x,t) = k u_{xx}(x,t), \\
 u|_{x=0} = u|_{x=c} = 0, \\
 u|_{t=0} = f(x)
 \end{cases} \]
 on the domain \(0 < x < c \) for all \(t > 0 \).
4) Find the steady temperature of a semicircular plate \(0 \leq \rho \leq a, \ 0 \leq \phi \leq \pi\), where the temperatures on the boundary are as described in the figure below.