Final Examination
Math 284
May 22, 2000

Name ______________________________

1. Evaluate
 a. \(\int \frac{dx}{x^3 + x} \)
 b. \(\int_0^2 \frac{8}{\sqrt{4 - x^2}} \, dx \)

2. The average speed of molecules in an ideal gas is
 \[\bar{v} = \frac{4}{\sqrt{\pi}} k^{3/2} \int_0^\infty v^3 e^{-kv^2} \, dv \]
 where \(k = \frac{M}{2RT} \), and where \(M \) is the molecular weight of the gas, \(R \) is the gas constant, \(T \) is the temperature, and \(v \) is the molecular speed. Show that
 \[\bar{v} = \frac{\sqrt{8RT}}{\pi M} \]

3. What is Simpson’s rule? Describe it, and explain its associated error. What happens to the error if the number of subintervals is increased by a factor of 10? What is the advantage of Simpson’s rule over other methods?

4. The arc of the parabola \(y = x^2 \) from (1,1) to (2,4) is revolved about the y-axis. Find the area of the resulting surface.

5. Find the (exact) centroid of the region bounded by \(y = \sin \frac{\pi x}{2} \), \(y = 0 \), \(x = 0 \), and \(x = 2 \).

6. Find the volume of the solid obtained by revolving the region bounded by \(y = x^3 \), \(y = 8 \), and \(x = 0 \) about the y-axis.

7. Scientists can determine the age of ancient objects by a method called radiocarbon dating. The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of carbon, \(^{14}\text{C}\), with a half-life of 5730 years. Vegetation absorbs carbon dioxide through the atmosphere and animal life assimilates \(^{14}\text{C}\) through food chains. When a plant or animal dies, it stops replacing its carbon, and the amount of \(^{14}\text{C}\) begins to decrease through radioactive decay. Therefore the level of radioactivity also must decay. A parchment fragment is discovered that has 74% of the radioactivity that plant material does now. Estimate the age of the parchment.

8. Use Euler’s method with a step size of 0.2 to estimate \(y(1) \), where \(y(t) \) is the solution to the initial value problem \(y'(t) = t + y^2 \), \(y(0) = -1 \).
9. What is the direction field for a differential equation? Sketch the direction field for \(y' = y - t \), and draw in some representative solutions.

10. What is the definition of \(\sum_{n=1}^{\infty} a_n \)?

11. Give three different tests that can be used to test for the convergence of a series, and explain how each is used.

12. Suppose that \(f(x) = T_n(x) + R_n(x) \) where \(T_n(x) \) is the \(n \)th degree Taylor polynomial for \(f(x) \) at \(x = a \). Write down an expression for \(T_n(x) \) and for \(R_n(x) \).

13. Determine if the series converges absolutely and/or conditionally. Explain why your answer is correct.

 a. \(\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{3n^3 + 4n^2 + 2} \),

 b. \(\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{n^4 + 1} \),

 c. \(\sum_{n=1}^{\infty} \frac{2^n}{n!} \).

14. Evaluate \(\int_0^{1/2} \frac{dx}{1 + x^5} \) accurately to \(10^{-5} \) with the aid of a power series. Demonstrate why your answer has the required degree of accuracy.

15. Let \(f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!} \), and find the radius of convergence of \(f(x) \). Show that \(f'(x) + 2xf(x) = 0 \).

16. In Einstein’s special theory of relativity, the mass of an object moving with speed \(v \) is

\[
m = \frac{m_0}{\sqrt{1 - v^2 / c^2}}
\]

where \(m_0 \) is the mass of the object at rest, and \(c \) is the speed of light. The kinetic energy of the object is the difference between its total energy and its rest energy, namely

\[
K = mc^2 - m_0c^2.
\]

Show that if \(v \) is very small relative to \(c \), then

\[
K \approx \frac{1}{2} m_0 v^2.
\]