The Mathematics of Geographic Profiling

Towson University Applied Mathematics Laboratory

Dr. Mike O'Leary

Ninth Crime Mapping Research Conference Pittsburgh, PA March 28 – 31, 2007

Supported by the NIJ through grant 2005–IJ–CX–K036

Project Participants

- Towson University Applied Mathematics Laboratory
 - Undergraduate research projects in applied mathematics.
 - Founded in 1980
- National Institute of Justice
 - Special thanks to Stanley Erickson (NIJ), Ron Wilson (NIJ), Iara Infosino (NIJ), Thomas Sexton (NIJ), Andrew Engel (SAS), and Coy May (Towson University).

Students

- 2005-2006:
 - Paul Corbitt
 - Brooke Belcher
 - Brandie Biddy
 - Gregory Emerson
- 2006-2007:
 - Chris Castillo
 - Adam Fojtik

- Laurel Mount
- Ruozhen Yao
- Melissa Zimmerman

- Jonathan Vanderkolk
- Grant Warble

Geographic Profiling

The Question:

Given a series of linked crimes committed by the same offender, can we make predictions about the anchor point of the offender?

The anchor point can be a place of residence, a place of work, or some other commonly visited location.

Geographic Profiling

- What characteristics should a good geographic profiling method possess?
 - 1. It should be mathematically rigorous.
 - 2. There should be explicit connections between assumptions on offender behavior and components of the mathematical model.

Geographic Profiling

- What (other) characteristics should a good geographic profiling technique possess?
 - 3. It should take into account local geographic features that affect:
 - a. The selection of a crime site;
 - b. The selection of an anchor point.
 - 4. It should rely only on data available to local law enforcement.
 - 5. It should return a prioritized search area.

Main Result

- We have developed a fundamentally new mathematical technique for geographic profiling.
 - We have been able to implement the algorithm in software, and begun testing it on actual crime series.

Existing Methods

- Spatial distribution strategies
- Probability distance strategies
- Notation:
 - Anchor point- $z = (z^{(1)}, z^{(2)})$
 - Crime sites- x_1, x_2, \dots, x_n
 - Number of crimes- n

Distance

Euclidean

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x^{(1)} - y^{(1)})^2 + (x^{(2)} - y^{(2)})^2}$$

Manhattan

$$d_1(\mathbf{x}, \mathbf{y}) = |x^{(1)} - y^{(1)}| + |x^{(2)} - y^{(2)}|$$

Street grid

Spatial Distribution Strategies

Centroid:

$$\zeta_{centroid} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

• Center of minimum distance: ζ_{cmd} is the value of y that minimizes

$$D(\mathbf{y}) = \sum_{i=1}^{n} d(\mathbf{x_i}, \mathbf{y})$$

 Circle Method: The anchor point is contained in the circle whose diameter are the two crimes that are farthest apart.

Probability Distribution Strategies

- The anchor point is located in a region with a high hit score.
- The hit score S(y) has the form

$$S(\mathbf{y}) = \sum_{i=1}^{n} f(d(\mathbf{y}, \mathbf{x}_i))$$

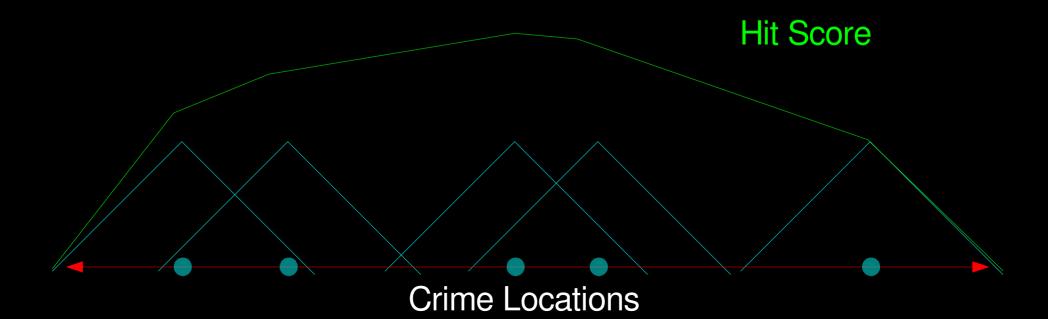
$$= f(d(\mathbf{z}, \mathbf{x}_1)) + f(d(\mathbf{z}, \mathbf{x}_2)) + \dots + f(d(\mathbf{z}, \mathbf{x}_n))$$

where x_i are the crime locations, f is a decay function and d is a distance.

Probability Distribution Strategies

Linear:

•
$$f(d) = A - Bd$$



Probability Distribution Strategies

- Existing methods differ in their choices of
 - The distance measure, and
 - The distance decay function;

but share the common mathematical heritage:

$$S(\mathbf{y}) = \sum_{i=1}^{n} f(d(\mathbf{y}, \mathbf{x}_i))$$

In practice, S(y) may be evaluated only at discrete values y_j giving us a hit score matrix $S_{ij} = \sum_{i=1}^{n} f(d(y_i, x_i))$

A New Approach

- Let us start with a model of offender behavior.
 - In particular, let us begin with the ansatz that an offender with anchor point z commits a crime at the location x according to a probability density function $P(x \mid z)$.
 - This is an inherently continuous model.

Modeling with Probability

- Probabilistic models are commonly used to model problems that are deterministic.
 - Stock market
 - Population genetics
 - Heat flow
 - Chemical diffusion

A New Approach

- Assumptions about
 - The offender's likely behavior, and
- The local geography can then be incorporated into the form of $P(x \mid z)$.

The Mathematics

• Given crimes located at x_1, x_2, \dots, x_n the maximum likelihood estimate for the anchor point ζ_{mle} is the value of y that maximizes

$$L(\mathbf{y}) = \prod_{i=1}^{n} P(\mathbf{x}_i | \mathbf{y})$$

$$= P(\mathbf{x}_1 | \mathbf{y}) P(\mathbf{x}_2 | \mathbf{y}) \cdots P(\mathbf{x}_n | \mathbf{y})$$

or equivalently, the value that maximizes

$$\lambda(\mathbf{y}) = \sum_{i=1} \ln P(\mathbf{x}_i | \mathbf{y})$$

= \ln P(\mathbf{x}_1 | \mathbf{y}) + \ln P(\mathbf{x}_2 | \mathbf{y}) + \cdots + \ln P(\mathbf{x}_n | \mathbf{y}).

Relation to Spatial Distribution Strategies

If we make the assumption that offenders choose target locations based only on a distance decay function in normal form, then

$$P(\boldsymbol{x} \mid \boldsymbol{z}) = \frac{1}{2\pi\sigma^{2}} \exp\left[-\frac{|\boldsymbol{x} - \boldsymbol{z}|^{2}}{2\sigma^{2}}\right]$$

 The maximum likelihood estimate for the anchor point is the centroid.

Relation to Spatial Distribution Strategies

 If we make the assumption that offenders choose target locations based only on a distance decay function in exponentially decaying form, then

$$P(\mathbf{x} | \mathbf{z}) = \frac{1}{2\pi\sigma^{2}} \exp\left[-\frac{|\mathbf{x} - \mathbf{z}|}{\sigma}\right]$$

 The maximum likelihood estimate for the anchor point is the center of minimum distance.

Relation to Probability Distance Strategies

What is the log likelihood function?

$$\lambda(\mathbf{y}) = \sum_{i=1}^{n} \left[-\ln(2\pi\sigma^2) - \frac{|\mathbf{x}_i - \mathbf{y}|}{\sigma} \right]$$

• This is the hit score S(y) provided we use Euclidean distance and the linear decay f(d)=A+Bd for

$$A = -\ln(2\pi\sigma^2)$$

$$B = -1/\sigma$$

Parameters

• The maximum likelihood technique does not require *a priori* estimates for parameters other than the anchor point.

$$P(\mathbf{x} \mid \mathbf{z}, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{|\mathbf{x} - \mathbf{z}|^2}{2\sigma^2}\right]$$

The same process that determines the best choice of z also determines the best choice of σ .

Better Models

- We have recaptured the many results from existing techniques by choosing $P(x \mid z)$ appropriately.
- These choices of $P(x \mid z)$ are not very realistic.
 - Space is homogeneous and potential crime locations are equi-distributed.
- We want to incorporate the effects of the local geography.

Better Models

- Our framework allows for better choices of P(x | z).
- Consider

$$P(\mathbf{x} \mid \mathbf{z}) = D(d(\mathbf{x}, \mathbf{z})) \cdot G(\mathbf{x}) \cdot N(\mathbf{z})$$

Distance Decay Geographic Normalization (Dispersion Kernel) factors

• What geographic factors should be included in the model?

Snook, *Individual differences in distance travelled by serial burglars*

Malczewski, Poetz & Iannuzzi, *Spatial analysis of residential burglaries in London, Ontario*

Bernasco & Nieuwbeerta, *How do residential burglars select target areas?*

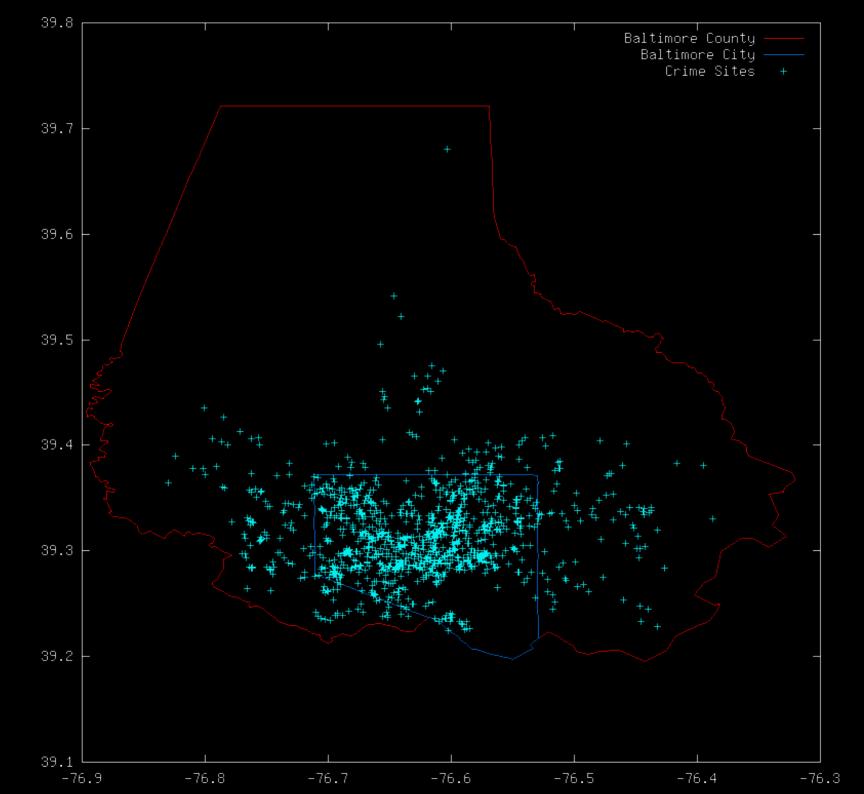
Osborn & Tseloni, *The distribution of household* property crimes

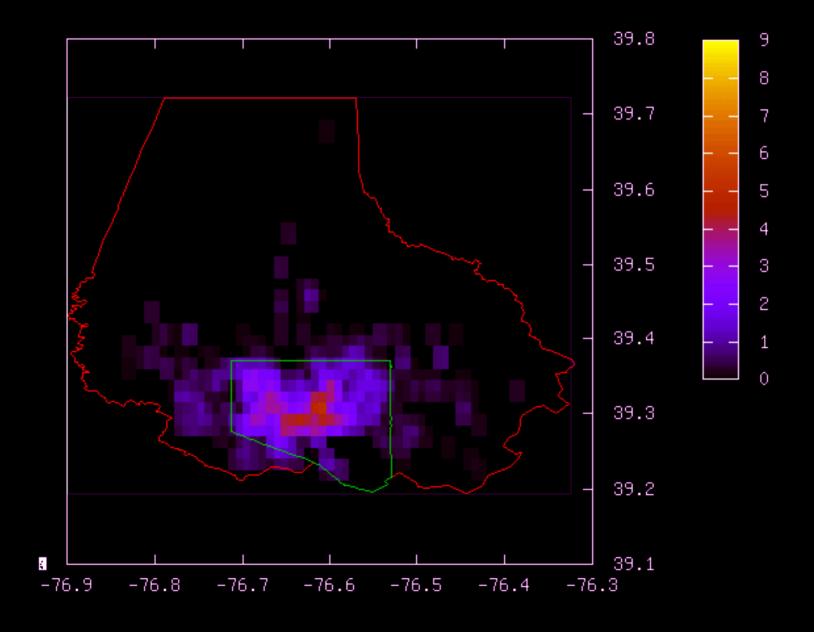
- This approach has some problems.
 - Different crimes have different etiologies.
 - We would need to study each different crime type.
 - There are regional differences.
 - * Tseloni, Wittebrood, Farrell and Pease (2004) noted that increased household affluence indicated higher burglary rates in Britain, and indicated lower burglary rates in the U.S.

- Instead, we assume that historical crime rates are reasonable predictors of the likelihood that a particular region will be the site of an offense.
 - Rather than explain crime rates in terms of underlying geographic variables, we simply measure the resulting geographic variability.
- Let G(x) represent the local density of potential targets.

- An analyst can determine what historical data should be used to generate the geographic target density function.
 - Different crime types will necessarily generate different functions G(x).
- G(x) could then be calculated in the same fashion as hot spots; *e.g.* by kernel density parameter estimation.

$$G(x) = \sum_{i=1}^{N} K(x - y_i)$$





- The target density function G(x) must also account for jurisdictional boundaries.
 - Suppose that a law enforcement agency gets reports for all crimes within the region *J*, and none from outside *J*.
 - Then we must have

$$G(x)=0$$
 for all $x \notin J$

as no crimes that occur outside J will be known to that agency.

Distance Decay

- The mathematical method does not depend upon any particular choice of the distance decay function, or a particular distance measure.
- We begin with the simple choice

$$D(d(\boldsymbol{x}, \boldsymbol{z})) = \exp(-\sigma|\boldsymbol{x} - \boldsymbol{z}|)$$

where the parameter σ is determined by the crime series data along with the anchor point

Normalization

The expression

$$P(oldsymbol{x} \mid oldsymbol{z}) = D(d(oldsymbol{x}, oldsymbol{z}) \cdot G(oldsymbol{x}) \cdot N(z)$$

is to represent a probability density function; as a consequence,

$$N(z) = \frac{1}{\iint_{J} G(y) D(d(y,z)) dy^{(1)} dy^{(2)}}$$

Mathematics

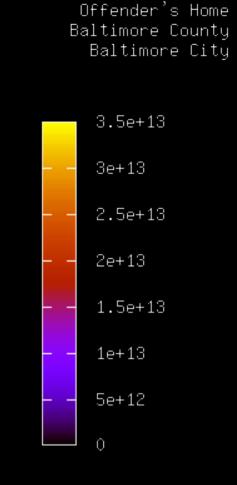
 We are then left with the mathematical problem of finding the maximum value of the likelihood function

$$L(y) = \frac{\prod_{i=1}^{n} D(d(x_{i}, y)) G(x_{i})}{\left[\iint_{J} D(d(\xi, y)) G(\xi) d\xi^{(1)} d\xi^{(2)}\right]^{n}}$$

Implementation

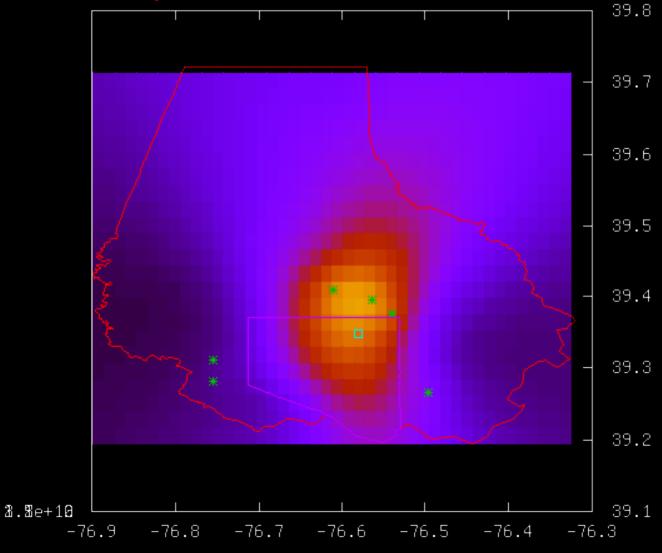
- We have implemented this algorithm in software.
 - Integration was performed using a sevenpoint fifth-order Gaussian method.
 - Optimization was performed using a cyclic coordinate technique with a Hooke and Jeeves accelerator.
 - Running time with ~650 boundary vertices and ~1000 historical crimes is ~10 minutes.

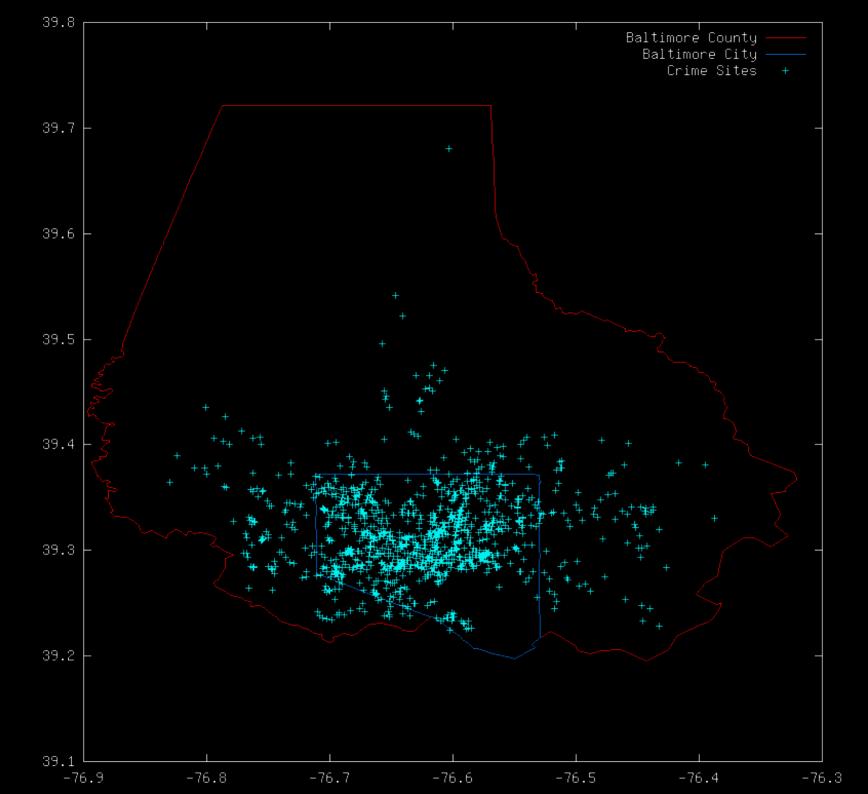
We assume that we do not know if the offender has committed any offenses within the city.



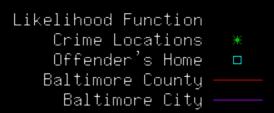
Likelihood Function

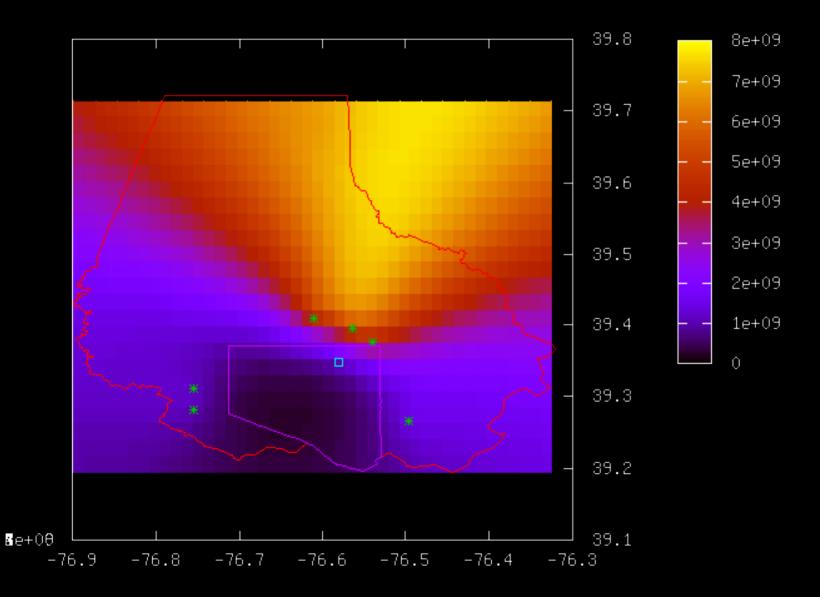
Crime Locations





We assume that the offender has not committed any offenses within the city.





Results

- The software is currently pre-release quality, and is undergoing testing and debugging.
 - I would be glad to share it with interested parties.
- When this completes, we will begin testing it against real data.
 - Volunteers are welcome- please help.

Future Work

- We have met many of our goals for a geographic profiling algorithm, but two issues remain:
 - 3b. It should take into account local geographic features that affect the selection of an anchor point.
 - 5. It should return a prioritized search area.
- Work on these areas continues using Bayesian techniques.

Strengths of this framework

- The framework is extensible.
 - Vastly different situations can be modelled by making different choices for the form and structure of $P(x \mid z)$.
 - e.g. angular dependence, barriers.
- The framework is otherwise agnostic about the crime series; all of the relevant information must be encoded in $P(x \mid z)$.

Strengths

- This framework is mathematically rigorous.
 - * There are mathematical and criminological meanings to the maximum likelihood estimate ζ_{mle} .

Weaknesses of this Framework

- GIGO
 - The method is only as accurate as the accuracy of the choice of $P(x \mid z)$.
- It is unclear what is the right choice for $P(x \mid z)$.
 - Even with the simplifying assumption that

$$P(oldsymbol{x} \mid oldsymbol{z}) = D(d(oldsymbol{x}, oldsymbol{z})) \cdot G(oldsymbol{x}) \cdot N(z)$$

this is difficult.

Weaknesses

- There is no simple closed mathematical form for $\zeta_{\rm mle}$.
 - Relatively complex techniques are required to estimate ζ_{mle} even for simple choices of $P(\boldsymbol{x} \mid \boldsymbol{z})$.
- The error analysis for maximum likelihood estimators is delicate when the number of data points is small.

Weaknesses

- The framework (so far) assumes that crime sites are independent, identically distributed random variables.
 - This is probably false in general!
- The mathematics in the framework can (probably) be adjusted to take this issue into account.

Questions?

Contact information:

Dr. Mike O'Leary

Director, Applied Mathematics Laboratory

Towson University

Towson, MD 21252

410-704-7457

moleary@towson.edu