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Geographic Profiling

The Question:

Given a series of linked crimes committed by 
the same offender, can we make predictions 
about the anchor point of the offender?

The anchor point can be a place of 
residence, a place of work, or some other 
commonly visited location.



Geographic Profiling

What characteristics should a good 
geographic profiling method possess?

1. It should be mathematically rigorous.

2. There should be explicit connections 
between assumptions on offender 
behavior and components of the 
mathematical model.



Geographic Profiling

What (other) characteristics should a good 
geographic profiling technique possess?

3. It should take into account local 
geographic features that affect:

a. The selection of a crime site;
b. The selection of an anchor point.

4. It should rely only on data available to 
local law enforcement.

5. It should return a prioritized search area.



Main Result

We have developed a fundamentally new 
mathematical technique for geographic 
profiling.

We have been able to implement the 
algorithm in software, and begun testing it 
on actual crime series.



Existing Methods

Spatial distribution strategies

Probability distance strategies

Notation:

Anchor point-

Crime sites- 

Number of crimes-  

z= z 1 , z 2

x1 , x2 ,⋯ , xn
n



Distance

Euclidean

Manhattan

Street grid

d1x , y =∣x
1− y1∣∣x 2− y2∣

d 2x , y = x1− y12 x 2− y22



Spatial Distribution Strategies

Centroid:

Center of minimum distance:        is the value 
of      that minimizes

Circle Method: The anchor point is contained 
in the circle whose diameter are the two 
crimes that are farthest apart.

centroid=
1
n∑i=1

n

x i=
x1x2⋯xn

n
cmd

D  y =∑
i=1

n

d x i , y 

y



Probability Distribution Strategies

The anchor point is located in a region with a 
high hit score.

The hit score          has the form

where      are the crime locations,    is a 
decay function and    is a distance.

S  y =∑
i=1

n

f d  y , xi

S  y

= f d  z , x1 f d  z , x2⋯ f d z , xn

xi f
d



Probability Distribution Strategies

Linear:

f d =A−Bd

Hit Score

Crime Locations



Probability Distribution Strategies

Existing methods differ in their choices of

The distance measure, and

The distance decay function;

but share the common mathematical heritage:

In practice,         may be evaluated only at 
discrete values      giving us a hit score 
matrix

S  y =∑
i=1

n

f d  y , xi

S ij=∑
i=1

n

f d  y j , x i

S  y 
y j



A New Approach

Let us start with a model of offender 
behavior. 

In particular, let us begin with the ansatz 
that an offender with anchor point        
commits a crime at the location       
according to a probability density function   
              .

This is an inherently continuous model.

P x ∣ z 

z
x



Modeling with Probability

Probabilistic models are commonly used to 
model problems that are deterministic.

Stock market

Population genetics

Heat flow

Chemical diffusion



A New Approach

Assumptions about 

The offender's likely behavior, and

The local geography

can then be incorporated into the form of

             .P x ∣ z 



The Mathematics

Given crimes located at                      the 
maximum likelihood estimate for the anchor 
point         is the value of     that maximizes

or equivalently, the value that maximizes

x1 , x2 ,⋯ , xn

mle y

L y =∏
i=1

n

P x i ∣ y 

=P x1∣ y P x2∣ y⋯P xn ∣y

 y =∑
i=1

n

ln P x i ∣y 

=ln P x1∣y ln P x2∣y ⋯ln P  xn∣y .



Relation to 
Spatial Distribution Strategies

If we make the assumption that offenders 
choose target locations based only on a 
distance decay function in normal form, then

The maximum likelihood estimate for the 
anchor point is the centroid.

P x ∣ z =
1

2
2 exp [−∣x−z∣2

22 ]



Relation to
Spatial Distribution Strategies

If we make the assumption that offenders 
choose target locations based only on a 
distance decay function in exponentially 
decaying form, then

The maximum likelihood estimate for the 
anchor point is the center of minimum 
distance.

P x ∣z =
1

22 exp [−∣x−z∣
 ]



Relation to
Probability Distance Strategies
What is the log likelihood function?

This is the hit score          provided we use 
Euclidean distance and the linear decay
                      for 

 y=∑
i=1

n

[−ln 2
2
−

∣x i− y∣

 ]
S  y 

f d =ABd
A=−ln 22
B=−1 /



Parameters

The maximum likelihood technique does not 
require a priori estimates for parameters 
other than the anchor point.

The same process that determines the best 
choice of     also determines the best choice 
of     .

P x ∣ z ,=
1

22 exp [−∣x−z∣2

22 ]
z





Better Models

We have recaptured the many results from 
existing techniques by choosing             
appropriately.

These choices of              are not very 
realistic.

Space is homogeneous and potential 
crime locations are equi-distributed.

We want to incorporate the effects of the 
local geography.

P x ∣ z 

P x ∣ z 



Better Models

Our framework allows for better choices of   
             .

Consider

P x ∣ z 

P x ∣ z =D d  x , z ⋅G x ⋅N  z 

Geographic
factors

NormalizationDistance Decay 
(Dispersion Kernel)



Geography

What geographic factors should be included 
in the model?

Snook, Individual differences in distance travelled by 
serial burglars

Malczewski, Poetz & Iannuzzi, Spatial analysis of 
residential burglaries in London, Ontario

Bernasco & Nieuwbeerta, How do residential burglars 
select target areas?

Osborn & Tseloni, The distribution of household 
property crimes



Geography

This approach has some problems.

Different crimes have different etiologies.

We would need to study each different 
crime type.

There are regional differences. 

Tseloni, Wittebrood, Farrell and Pease 
(2004) noted that increased household 
affluence indicated higher burglary rates 
in Britain, and indicated lower burglary 
rates in the U.S. 



Geography

Instead, we assume that historical crime 
rates are reasonable predictors of the 
likelihood that a particular region will be the 
site of an offense.

Rather than explain crime rates in terms of 
underlying geographic variables, we 
simply measure the resulting geographic 
variability.

Let           represent the local density of 
potential targets.

G x 



Geography

An analyst can determine what historical 
data should be used to generate the 
geographic target density function.

Different crime types will necessarily 
generate different functions         .

         could then be calculated in the same 
fashion as hot spots; e.g. by kernel density 
parameter estimation.

G x 

G  x =∑
i=1

N

K  x− y i

G x 







Geography

The target density function          must also 
account for jurisdictional boundaries.

Suppose that a law enforcement agency 
gets reports for all crimes within the region 
  , and none from outside   .     

Then we must have         

as no crimes that occur outside     will be 
known to that agency.

G x 

J J

G  x =0 for all x∉J

J



Distance Decay

The mathematical method does not depend 
upon any particular choice of the distance 
decay function, or a particular distance 
measure.

We begin with the simple choice

where the parameter     is determined by the 
crime series data along with the anchor point
   .

D d  x , z =exp −∣x−z∣



z



Normalization

The expression

is to represent a probability density function; 
as a consequence,

P x ∣ z =D d  x , z ⋅G x ⋅N  z 

N z =
1

∬
J

G  y D d  y , z dy1dy2



Mathematics

We are then left with the mathematical 
problem of finding the maximum value of the 
likelihood function

L  y=
∏
i=1

n

D d  x i , y G  x i

[∬J D d  , y G d 1d 2

]
n



Implementation

We have implemented this algorithm in 
software.

Integration was performed using a seven-
point fifth-order Gaussian method.

Optimization was performed using a cyclic 
coordinate technique with a Hooke and 
Jeeves accelerator.

Running time with ~650 boundary vertices 
and ~1000 historical crimes is ~10 
minutes.



We assume that we do not know if the 
offender has committed any offenses within 
the city.





We assume that the offender has not 
committed any offenses within the city.



Results

The software is currently pre-release quality, 
and is undergoing testing and debugging.

I would be glad to share it with interested 
parties.

When this completes, we will begin testing it 
against real data.

Volunteers are welcome- please help.



Future Work

We have met many of our goals for a 
geographic profiling algorithm, but two issues 
remain:

3b. It should take into account local 
geographic features that affect the 
selection of an anchor point.

5. It should return a prioritized search area.

Work on these areas continues using 
Bayesian techniques.



Strengths of this framework

The framework is extensible.

Vastly different situations can be modelled 
by making different choices for the form 
and structure of             .

e.g. angular dependence, barriers.
The framework is otherwise agnostic about 
the crime series; all of the relevant 
information must be encoded in             .

P  x ∣ z 

P  x ∣ z 



Strengths

This framework is mathematically rigorous.

There are mathematical and criminological 
meanings to the maximum likelihood 
estimate        .mle



Weaknesses of this Framework

GIGO

The method is only as accurate as the 
accuracy of the choice of             .

It is unclear what is the right choice for 

Even with the simplifying assumption that

this is difficult.

P  x ∣ z 

P  x ∣ z  .

P  x ∣ z =D d x , z ⋅G  x⋅N  z 



Weaknesses

There is no simple closed mathematical form 
for       .

Relatively complex techniques are 
required to estimate       even for simple 
choices of             .

The error analysis for maximum likelihood 
estimators is delicate when the number of 
data points is small.

mle

mle

P  x ∣ z 



Weaknesses

The framework (so far) assumes that crime 
sites are independent, identically distributed 
random variables.

This is probably false in general!

The mathematics in the framework can 
(probably) be adjusted to take this issue into 
account.



Questions?

Contact information:

Dr. Mike O'Leary

Director, Applied Mathematics Laboratory

Towson University

Towson, MD 21252

410-704-7457

moleary@towson.edu


