## ConcepTest Questions on Units:

## Temperature Conversion

The normal human tolerance for pain in terms of temperature is $61^{\circ} \mathrm{C}$ (ask any McDonald's employee). What would this temperature be in the Fahrenheit scale?

1. $140^{\circ} \mathrm{F}$
2. $66^{\circ} \mathrm{F}$
3. $334^{\circ} \mathrm{F}$
4. $170^{\circ} \mathrm{F}$

Correct Answer: 1. $\mathbf{1 4 0}^{\circ} \mathbf{F}=(\mathbf{6 1} \times 1.8+\mathbf{3 2})$
Comment to instructor: Choice 2 was obtained by 61/1.8 +32 .
Choice 3 was obtained by $61+273$.
Choice 4 was obtained by $(61+32) 1.8$

## Unit Conversion of g/L to mg/dL.

It is desirable to keep our cholesterol level down below $200 \mathrm{mg} / \mathrm{dL}$ of blood serum. If your cholesterol level is $1.55 \mathrm{~g} / \mathrm{L}$ of blood serum, is it too high? What is it in $\mathrm{mg} / \mathrm{dL}$ ?

1. $1550 \mathrm{mg} / \mathrm{dL}$
2. $155 \mathrm{mg} / \mathrm{dL}$
3. $1.55 \times 10^{-4} \mathrm{mg} / \mathrm{dL}$
4. $1.55 \times 10^{-2} \mathrm{mg} / \mathrm{dL}$

Correct Answer: 2. $\mathbf{1 5 5} \mathbf{~ m g} / \mathbf{d L}$ (cholesterol level not bad)
$\chi \frac{\mathrm{mg}}{\mathrm{dL}}=\frac{1.55 \mathrm{~g}}{\mathrm{~L}} \times \frac{1 \mathrm{~L}}{10 \mathrm{dL}} \times \frac{10^{3} \mathrm{mg}}{1 \mathrm{~g}}=\frac{155 \mathrm{mg}}{\mathrm{dL}}$
Comment to Instructor: Choice \#1 probably means students erroneously used $1 \mathrm{dL} / 10 \mathrm{~L}$, or they erroneously used $10 \mathrm{dL} / 1 \mathrm{~L}$.
Choice \#4 means students used $1 \mathrm{mg} / 10^{3} \mathrm{~g}$ but had the correct $10 \mathrm{dL} / 1 \mathrm{~L}$.
Choice \#3 means students erroneously used $1 \mathrm{dL} / 10 \mathrm{~L}$ and $1 \mathrm{mg} / 10^{3} \mathrm{~g}$, or had the right conversions but both were upside down: $10 \mathrm{dL} / 1 \mathrm{~L} x 1 \mathrm{~g} / 10^{3} \mathrm{mg}$.

## Unit Conversion of pint in hrs to mL/sec.

If a yeast fermentation is producing 0.551 pint of $\mathrm{CO}_{2}$ in 5.43 hours, what is the rate of $\mathrm{CO}_{2}$ production in mL per seconds? Show your dimensional analysis setup and then give the answer to the correct significant figures.
$x \frac{m L}{s}=\frac{0.511 p t}{5.43 h}\left(\frac{1 q t}{2 p t}\right)\left(\frac{0.946 L}{1 q t}\right)\left(\frac{10^{3} m L}{1 L}\right)\left(\frac{1 h}{60 \mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 s}\right)$
Correct Answer is $\mathbf{1 . 4 9 \times 1 0 ^ { - 2 }} \mathbf{m L} / \mathbf{s}$
Comment to Instructor:
This is a complex unit conversion problem and may take more time than you wish to allow in a lecture.

The following are likely (wrong) answers that students come up with.

1. $6.91 \times 10^{5} \mathrm{~mL} / \mathrm{s}$
2. $1.5 \times 10^{-2} \mathrm{~mL} / \mathrm{s}$
3. $1.49 \times 10^{-1} \mathrm{~mL} / \mathrm{s}$
\#1 indicates students are using their calculators improperly. Students are looking at the numbers as $0.511 \times 0.946 \times 10^{3} \div 5.43 \mathrm{~h} \mathbf{x} 2 \mathrm{pt} \mathbf{x} 60 \mathrm{~min} \mathbf{x} 60 \mathrm{~s}$. Instead of dividing by $2 p t$, dividing by 60 min, and dividing by 60 s , students have multiplied. This is common when students are learning to do chain operation on their calculator for the first time. \#2 indicates students are considering 60 min and 60 s as having only 2 sig. fig. and therefore rounding their answers to 2 sig. fig.
\#3 indicates students are entering $10^{3}$ into their calculators improperly. Instead of pressing X 1 EE (or EXP) 3, they probably pressed X 10 EE (or EXP) 3 which gives them an answer that is a factor of 10 too big. They have erroneously entered $10 \times 10^{3}$ instead.
